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1 Background 
Security is an important consideration for Dedicated Short Range Communications (DSRC) that 
supports vehicle-safety applications.  For the system to be secure, the applications must be able to 
trust that the communication has been received unaltered and from a known source. The 
communication should require a low amount of computational and communications overhead, 
and it must be robust in the event of individual units being compromised.  Most of the vehicle-
safety applications studied in the VSC project broadcast messages to all receivers, rather than 
directed to a given peer, which creates additional security challenges. 

Communications security consultants completed the majority of technical work for this task, as 
well as the majority of the documentation contained in this appendix.  The solutions presented in 
this appendix represent the recommendations of the consultants, which appear to meet the 
assumptions and constraints within this task. However, with the currently proposed architecture, 
which includes many optimizations, each message transmitted would include significant 
overhead, and the message signatures would take time to process once they are received.  
Management of a Public Key Infrastructure for RSUs would also be necessary, according to the 
proposed scheme. This analysis represents a foundational examination of the security question, 
and provides a recommendation upon which future testing may be accomplished. The overall 
feasibility of implementing the proposed security approach has not yet been determined. 
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2 Threat Model 
2.1 Background 
Security is a primary concern for vehicle-safety applications that are enabled or enhanced by 
wireless communications.  This is the first in a series of sections describing the security issues 
associated with Vehicle Safety Communications and their possible solutions. This section focuses 
on the threat model, which will need to be considered by any potential design. 

In this threat model, we identified four major security goals for the VSC system: 

1. Message integrity/origin authentication – receivers can tell that a valid unit generated the 
message(s); 

2. Correctness – when units generate valid messages, we can have some assurance that they 
were correct; 

3. Privacy – it should not be possible to use VSC to remotely obtain private information about a 
vehicle's behavior and then tie it back to a single identified vehicle; and 

4. Robustness – the system should contain mechanisms for containing misbehaving units and, 
where possible, continue to operate under attack. 

In order to accomplish these security goals, we need to consider the kinds of attacks that might be 
mounted. We contemplated four basic kinds of attackers with escalating capabilities: 

1. Attackers with a programmable radio transmitter/receiver; 

2. Attackers with access to an un-modified VSC unit who can, therefore, control the inputs, 
sensors, etc.; 

3. Attackers who have access to a modified VSC unit and who have obtained the keying 
material; and 

4. "Inside" attackers who have access to records and equipment operated by the vehicle 
manufacturer or the VSC unit manufacturer. 

Each of these attackers has a certain class of attacks that they are able to mount. In general, 
attackers with greater capabilities will also be able to mount a greater number of attacks, 
including potentially more damaging ones. However, certain kinds of attacks – such as those on 
the Global Positioning System (GPS) satellites and ground stations – are out of scope for this 
threat model. Attackers with the capability to mount such attacks can, in general, not be defended 
against, though there are techniques available to contain the threat they present. 

We must assume throughout our design that some attacks will succeed and some units will be 
compromised. Thus, the design of the eventual system must incorporate this assumption as part of 
the threat model. One major focus of future work will be on containing compromise by detecting 
when it has occurred and shutting compromised units out of the VSC system. 

2.2 Introduction 
5.9 GHz DSRC is a wireless communications system that provides vehicle-vehicle and 
infrastructure-vehicle communications services. One of the anticipated major uses of this 
technology is for safety information such as emergency braking warnings, traffic signal violation 
warnings, and curve speed warnings.  

Security is a primary concern in any vehicle-safety application and it is especially important when 
the critical data is being transmitted over the air. Without security, an attacker could tamper with 
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the messages being communicated and potentially cause harm. To take merely one example, an 
attacker who could forge messages could send false braking indicators, causing inappropriate 
emergency braking and perhaps crashes. 

The first step in designing any security system is to determine the threat model. A threat model 
describes the capabilities that an attacker is assumed to be able to deploy against the system. It 
then attempts to predict what sorts of attacks those capabilities might enable the attacker to 
mount. Equally important, it specifies the forms of attack that are out of scope for the system. 
Nearly every security system is vulnerable to a sufficiently dedicated and resourceful attacker. 
The goal of security is not to provide absolute protection but to manage risk. When deciding 
whether to protect against an attack, the difficulty of providing that protection needs to be 
balanced against the seriousness of the threat and the difficulty of mounting it. 

It is extremely difficult to estimate the magnitude of each threat, since the potential harm can vary 
widely.  For example, if an attacker could impersonate an emergency vehicle, he or she could 
mount threats with consequences of different magnitudes.  The attacker could use the 
communication to move quickly through traffic, convincing drivers that an emergency vehicle is 
approaching and causing them to move to the side of the road.  This could result in delays and 
possibly confusion (when they do not see an emergency vehicle) for the other drivers.  That same 
attacker could alternatively plan to preempt traffic signals in a coordinated fashion to make sure 
that the vehicle of an elected official, for example, would be properly placed for a terrorist attack.  
This scenario clearly has more serious consequences.  Taking another example, if an attacker can 
impersonate a vehicle in an emergency braking maneuver, he or she could cause traffic jams 
behind them that could serve several purposes.  The disturbance could simply be an amusement 
for the attacker, or it could be used in collaboration with other attackers to temporarily obstruct 
traffic arteries around a targeted city.  Because the potential consequences of an attack vary so 
widely, they are not quantified in this report. However, some recent real-world examples may 
serve to highlight the need for secure communications. 

In July of 2003, Kohno et al. [41] published a series of flaws in Diebold Election Systems’s 
electronic voting system, causing some loss of confidence in e-voting and significant negative 
publicity for Diebold, which has remained in the news long after the initial publication.  
Secondly, 3M currently sells a device which allows traffic signals to be remotely controlled by 
public-safety vehicles.  This system has no security, and consumer units that can control these 
intersections recently have become available [42], much to the dismay of the press and public.  If 
VSC does not include the appropriate security, similar results are possible. 

2.3 Overview of VSC for the Purpose of a Security Study 
In this section, VSC is described briefly in terms pertinent to a security study.  Reporting for the 
threat model will refer to the VSC system, as described in this section. 

The VSC system will allow vehicles to communicate with each other and with infrastructure 
elements. Broadly speaking, this means there are two types of network elements: 

Road Side Units (RSUs) – network nodes embedded in infrastructure elements such as road signs, 
traffic signals, etc., and  

On-Board Units (OBUs) – network nodes embedded in vehicles. 

In both cases, it is expected that the units will at a minimum consist of: 

• A general purpose processor and associated memory; 

• A radio transmitter and receiver; 
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• Interfaces to sensors as required; and 

• A GPS receiver (for non-stationary units). 

This combination of elements enables a number of safety application scenarios [1]. For purposes 
of analysis we will focus on three such application scenarios, which were determined to be 
representative of the required system capabilities. We briefly describe those scenarios here: 

 

2.3.1 Curve Speed Warning 
 

 

 

Figure 1: Curve Speed Warning Scenario 

 

Probably the simplest VSC application scenario is Curve Speed Warning (CSW). It is quite 
common for curves in roads to have safe traversal speeds that are significantly less than the 
current speed limit or, at least, less than the prevailing vehicle speed. Such curves often have 
signs posted that warn drivers of the maximum safe speed for that curve. CSW is effectively an 
electronic version of such signs. Since radio transmissions can be received beyond line of sight, 
CSW can provide advance warning of the need to slow down. 

In its simplest form, CSW could be implemented as a radio transmitter broadcasting the same 
speed limit as posted on the sign. As currently contemplated, it would also include the shape of 
the oncoming curve/curves so that the vehicle can calculate individual limits. The user interface 
for CSW is not specified; however for our purposes we assume that when the OBU receives a 
CSW signal it attempts to determine whether the vehicle is moving at a safe speed, and if not, 
warns the driver in some way. 
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2.3.2 Traffic Signal Violation Warning 
 

 
 

Figure 2: Traffic Signal Violation Warning Scenario 

 

Traffic Signal Violation Warning (TSVW) acts to increase the amount of information provided by 
traffic signals and allow the driver to be warned if he is in danger of going through a red light. 
Traditional traffic signals have three modes: red, green, and yellow. The current color state 
provides only a limited amount of information about the time until the next state. In particular, the 
time from red to green and green to red is almost entirely unbounded. The TSVW application 
scenario provides this timing information to the vehicle, which can warn the driver when 
appropriate. 

A TSVW RSU would likely be attached to a traffic signal. It would periodically broadcast its own 
location (to identify the specific traffic signal being referenced), the current state of the signal in 
each direction, plus the expected time until the next state and what that state will be. As with the 
CSW application scenario, the OBU would attempt to determine whether the vehicle was in 
danger of violating the traffic signal and notify the driver if so. 
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2.3.3 Extended Brake Lights 
 

 
 

Figure 3: Extended Brake Lights Scenario 

 

Like CSW and TSVW, Extended Brake Lights (EBL) extends the operational range of 
conventional visual signals. Unlike CSW and TSVW, EBL is a vehicle-to-vehicle application 
scenario rather than an infrastructure-vehicle application scenario. The purpose of EBL is to 
extend the range of brake light signals in emergency braking situations. Currently, drivers can see 
when the vehicle ahead of them is braking, but cannot see the brake lights of vehicles further 
down the road. In addition, brake lights are either on or they are off. They provide no information 
about the magnitude of the deceleration. These factors limit drivers' reaction time to emergency 
braking events. 

The purpose of EBL is to enable improved response to such events. When a VSC-enabled vehicle 
detects hard braking (via brake pedal sensors, accelerometers, etc.) it broadcasts an EBL warning 
containing its position, velocity, acceleration, etc. When other VSC-enabled vehicles in the 
vicinity receive the warning, their onboard CPUs determine whether this is a potential threat and, 
if so, warn the driver of the situation. 

Note that unlike CSW and TSVW, in which the OBUs are receivers, EBL requires the OBU to 
have sensors and a radio transmitter. 

 

2.3.4 Other Potential Situations 
We have mentioned two kinds of messages: vehicle-to-vehicle and infrastructure-to-vehicle. For 
completeness, we note that there are two other potential kinds of messages: vehicle-to-
infrastructure (e.g. for traffic density measurement) or infrastructure-to-infrastructure (for 
coordination purposes). We do not believe that these situations introduce new security threats 
beyond those in the situations described above. 

2.3.5 VSC Unit Life Cycle 
OBUs are likely to have a simple life cycle: they are manufactured – either by the vehicle 
manufacturer or a subcontractor – and then installed in the vehicle. At some point during this 
process they are initialized with the appropriate keying material. They then require no real 
management other than keying material (and potentially software) updates, and deactivation 
under certain removal, reuse and vehicle retirement conditions. The means and criteria for 
deactivation are not defined in this report and need to be developed and tested via a detailed 
FMEA process.  One exception here is public safety OBUs, which derive their authority from the 
agency that operates their vehicles, not the vehicle manufacturer. Their life cycle is much more 
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like that of RSUs, and the details of their life cycle management will be covered by a different 
team (see Section 2.1, entitled “Interaction With DSRC Standards Groups”). 

The life cycle of RSUs is more complicated than that of ordinary OBUs. The first difference is 
that the RSU derives its authority from the agency that operates it. Thus, RSUs will likely be 
initialized by the transportation agency that installs them. The second difference is that RSUs 
may need to be reconfigured as conditions change; for instance, a stop sign might be moved. 
Thus, RSUs must be field-manageable or even remotely manageable via the Internet. This 
management system must be constructed in such a way that only authorized agents can manage 
the RSU. This sort of authentication, authorization, and access control is a classic security 
problem with a number of known solutions. 

2.4 Desired Security Services 
The most basic security service that we are interested in providing is that the receiver of a VSC 
message obtains an accurate picture of the state of the world, as far as the transmitter knew it. It is 
easiest to think of this service as rejecting all messages that do not match those which would be 
generated by a perfect VSC unit. Imagine that each vehicle and infrastructure unit were fitted 
with a perfect VSC unit that always broadcast correct messages. The goal of VSC security, then, 
is to arrange that any given VSC receiver can reject any messages that do not match those which 
would have been generated by the perfect VSC unit. 

We should be able to obtain this goal even in the face of attack. Attackers might have a variety of 
capabilities, which we consider in Section 3.7. Most likely this includes the ability to broadcast 
arbitrary messages and/or the ability to cause some units to lie. Thus, while we must expect that 
receiving units will receive bogus messages that do not match those which would be transmitted 
by the perfect unit, the unit should be able to reject those messages. 

This general security service implies two sub-services: message integrity/origin authentication 
and correctness. 

2.4.1 Message Integrity / Origin Authentication (MI /OA) 
The purpose of MI/OA is to allow a receiving unit to determine whether messages that it receives 
were generated by valid VSC units and have not been tampered during transit. Clearly, if an 
attacker could easily generate false messages or tamper with legitimate ones, then they could 
cause a receiving unit to have false beliefs. 

In some cases, it is also necessary for a VSC receiver to be able to determine that a series of 
transmissions came from the same source. For instance, a receiver might want to determine the 
path of a given vehicle in order to assess road conditions. 

2.4.2 Correctness 
Even if we assume that we have some MI/OA service, there is still the possibility that a legitimate 
VSC unit will lie. Thus, we want to somehow ensure that the messages transmitted by a unit 
reflect the state of the world, at least as far as the transmitting unit knows. 

2.4.3 Privacy 
A secondary but still important goal of the system is privacy. In many cases, OBUs will be 
transmitting information about the state of the vehicle that could be used against the owner of the 
vehicle. For instance, if vehicles transmit their location, speed, and identity, it would be possible 
for terrorists to easily collect information about the movements of public officials by deploying 
sensors that listened for their OBU transmissions. This type of information leakage appears likely 
to make the VSC system unattractive to customers. Thus, it is not acceptable, for instance, to 
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issue every vehicle a Public Key Infrastructure (X.509) certificate [2] which is transmitted with 
each message. 

The privacy requirement of our design, therefore, is that to the extent to which potentially 
compromising information is transmitted, it should be difficult to tie that information to any 
particular vehicle without being in close physical proximity to the vehicle (in which case the 
information would be self-evident). Thus, it is likely necessary to hide the identity of the 
transmitting unit. 

It is not clear at the present time whether complete concealment of the transmitter's identity or 
merely plausible deniability is required. Note that in either case, the need for privacy interacts 
with that for MI/OA. For instance, it is sometimes necessary to be able to determine that 
messages had a common origin. This needs to be done in such a way that messages can only be 
linked over short time windows to avoid excessive information leakage. 

Note that the goal of privacy is different from that of confidentiality. In most cases, the 
information being broadcast is inherently public, and it is just the identity of the transmitter that 
needs to be kept private. At this time, the VSC research has not identified any applications that 
require confidentiality. If those applications are identified, then that new requirement will need to 
be considered during the solution stage. 

2.4.4 Robustness 
Another secondary security goal is robustness. It must be assumed that some units will be 
compromised—either subverted into generating incorrect messages or have their keying material 
compromised. The system should have methods of recovering from that compromise. This will 
most likely require ways to allow legitimate units to ignore messages from compromised units. 

Another important form of robustness is the ability to withstand denial of service (DoS) attacks. 
In such attacks, an attacker attempts to stop parts of the system from functioning. He might, for 
instance, jam all the radios in an area or attempt to send messages to individual units to stop them 
from receiving or transmitting. Such attacks are notoriously difficult to defend against. Our goal 
will be to defend against them where possible and, at worst to avoid making them any easier. 

2.4.5 Fail-Safety 
A related issue is that of failure modes. It may well be the case that a receiving unit has some 
reason to doubt the correctness of a message, though it is not entirely sure. It is not entirely clear 
how such messages should be handled. 

For example, in many cryptographic systems, compromised units are added to a revocation list. 
Thus, when a unit receives a message, it checks the sender identity against the revocation list and 
rejects the message if the sender is on the list. Revocation lists are issued on some regular 
schedule (monthly is common). Now, consider what happens if a unit for some reason has not yet 
received the current revocation list. In theory, it then cannot validate any message because it 
cannot check for revocation status. In practice, if the unit has a relatively recent list -- according 
to which the sender is valid -- then with high probability the incoming message is still valid since 
attacks would be statistically rare. A system that failed safe would discard such messages if the 
list has surpassed its expiration date, but it would have substantially less information about the 
world. 
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2.5 A Strawman Security Architecture for Use in the Threat 
Model 

In this section, we describe a strawman security architecture. It is not intended to be a complete 
design and indeed has known deficiencies with respect to the security goals we have just 
identified. It is intended to provide a common reference point for the rest of the threat model 
discussion and is necessary for that purpose only. 

2.5.1 Providing Communication Security 
In order to provide MI/OA, we divide the world into two categories: legitimate units and all 
others. All legitimate units will share a single symmetric key Ki, which is valid for time period i. 
Messages are transmitted with an attached Message Authentication Code (MAC), computed using 
Ki. i.e., the unit transmits message M as M||MAC(Ki,M). Thus, a receiving unit can verify the 
correctness of a message via checking the MAC over M. 

Each unit in the system will have a unique certified public/private key pair, but this key pair is 
used only for key distribution. Each group key Ki is issued by a single central authority, the Key 
Distribution Center (KDC), as shown in Figure 4. That authority only issues Ki to the units which 
are believed to be valid at the beginning of time period i. The KDC is usually operated by a 
Security Officer (SO) who is responsible for issuing keys and verifying that units have not been 
compromised. 

 

 
 

Figure 4: Strawman key distribution 

 

It should be readily apparent that this system provides both MI/OA and privacy. As only valid 
units possess Ki, only they can generate valid messages and because the messages are MACed 
they cannot be changed in transmit. As all messages are MACed with the same common key, it is 
not possible to determine which messages were generated by which unit, thus privacy is provided. 

In addition, this system provides a measure of robustness against compromise. Since the group 
key is periodically refreshed, if a unit is known to be compromised in time period i, the KDC 
simply does not issue it a key in time period i+1. 

This strawman system is not a complete design or even necessarily the kind of security 
architecture that will eventually be deployed. It is provided purely as a reference point to focus 
discussion. The system just described has a number of known deficiencies. In particular, there is 
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no cryptographic way to differentiate RSUs from OBUs. Thus, an attacker who recovered the 
keying material from an OBU could impersonate an RSU. A hybrid system in which RSUs – 
which do not require privacy – are authenticated with public key cryptography could fix this 
problem.  

2.5.2 Correctness 
The system we have just described does not, however, guarantee correctness. An attacker in 
possession of a valid unit can extract Ki or the unit private key (through which he can obtain Ki) 
and can then transmit messages of his choice, posing as his unit. In order to prevent this attack, 
we need to harden the unit. The general idea is to enclose the sensitive portions in a tamper-
resistant and tamper-evident casing, such as that specified in FIPS 140-2, levels 3-4 [3], and 
described below. 

 

 
 

Figure 5: Strawman Block Diagram 

 

The boundaries of the casing are an issue that will need to be decided during the full design 
process. For our strawman, we will consider a minimal configuration in which only the 
cryptographic unit, GPS receiver, a processor, and a real-time clock are embedded inside the 
tamper enclosure, as shown in Figure 5. The rest of the sensor modules lay outside the tamper 
enclosure. Therefore it is possible to convince the unit that, for instance, the user has applied the 
brake pedal by manipulating the appropriate sensor lead. In principle, one could place the GPS 
outside of the tamper enclosure as well; however, this would leave the unit with no way of 
independently determining the location of the unit and thus reduce correctness nearly to zero. 

In general, there are two kinds of tamper seals:  tamper-resistant and tamper-evident.  A tamper-
resistant seal is designed to be difficult to open and to ensure that the unit self-destructs (typically 
by zeroing the keying material) if an attacker attempts to open it. By contrast, a tamper-evident 
seal is simply designed to leave evidence that it has opened. Thus, if an attacker opened the unit 
and violated the tamper seal, it would be possible to subsequently determine this by physical 
inspection of the unit. For purposes of our strawman, we will assume that the seal is tamper-
resistant, but that a sufficiently dedicated attacker might be able to extract the keying material. 
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2.6 Required Unit Capabilities 
Now that we have covered each potential sample application scenario we can see that different 
types of units have different required capabilities. We may be able to exploit these differing 
requirements in our final design. We discuss those requirements here, beginning with OBUs. 

2.6.1 OBUs 
OBUs come in two varieties with different potential security requirements. They may either be 
intended for use in passenger vehicles operated by ordinary customers or they may be intended 
for public-safety vehicles such as ambulances and police vehicles. The requirements for these 
units differ both in terms of privacy and in terms of the desired degree of protection for keying 
material. 

Protection of Keying Material 
We expect that public-safety vehicles will need a higher degree of protection for their 
keying material. The rationale here is that public-safety vehicles will be able to create 
certain classes of messages that consumer vehicles cannot, e.g., "I'm an ambulance, out of 
the way." Clearly, forgery of such messages is especially undesirable and so public-safety 
OBUs need a higher degree of assurance. Some of this assurance will likely be provided 
by physical security around the vehicles themselves, but it is likely that the OBU will 
need better protection as well. Thus, public-safety OBUs might use better tamper sealing, 
be subject to periodic inspection, etc. 

Note that in this scenario it would be desirable to somehow arrange that compromised 
consumer OBUs cannot be used to generate public-safety messages. The strawman 
system described in Section 3.5 cannot do this, because it requires the ability to verify a 
class of messages that the unit cannot generate. Generally, this requires public key 
technology, because with symmetric key, the ability to verify authenticity of a message is 
linked to the ability to generate valid messages. 

Privacy 
One goal of the overall VSC system design is to maintain privacy for traffic generated by 
customer OBUs. By contrast, public-safety vehicles generally do not require privacy. In 
fact, auditability for public safety is most likely desirable, especially if it allows easier 
revocation of compromised OBUs. 

2.6.2 RSUs 
RSUs also come in two varieties, as shown by the CSW and TSVW scenarios. The CSW RSU is 
a stationary unit that needs only to be able to generate the same message repeatedly.1  By contrast 
the TSVW RSU is dynamically linked to the traffic signal and therefore needs a modest amount 
of intelligence. 

Static Devices 
A CSW RSU, in its simplest implementation, is a fairly dumb device and transmits the 
same (static) information repeatedly. Since the road it describes is stationary, it can be 
installed with information about the curve and never have to get any extra input. As a 
consequence, it does not need to have any sensors and is not vulnerable to sensor input-

                                                      
1 Note that a CS/RW RSU that adjusts its advice based on current weather conditions or observations of 
vehicle behavior is actually a dynamic RSU.  Some applications, such as construction zone warnings, also 
might involve temporary movable dynamic RSUs. 
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based attacks. At most, it needs to be able to generate messages with new timestamps to 
avoid replay attacks. However it can be easily fitted with a real-time clock. 

Similarly, a CSW RSU does not need to be mobile. It can always advertise the same 
position and curve data. In fact, it does not even need a GPS unit, since it can be 
programmed with its current position in an external fashion. (Although one might fit the 
RSU with a GPS as a fail-safe mechanism to ensure that it has been installed in the right 
location). For instance when the RSU is programmed with its curve speed information, it 
might also be programmed with its own position. 

Dynamic Devices 
The TSVW application scenario illustrates another kind of RSU, the dynamic RSU that 
transmits dynamic content. Unlike the CSW RSU, the TSVW RSU needs to know 
external states, in this case the traffic signal phase and timing information. It must, 
therefore, be able to generate some variety of messages containing different timings and 
phases. Like a CSW RSU, a TSVW RSU does not need to be mobile, since traffic signals 
are in fixed positions. However, one might imagine that some kinds of dynamic RSUs 
would move, e.g., construction work signals. 

Common Limitations 
Both kinds of RSUs share some limitations. Note that since the connection between any 
given RSU and its message is readily apparent, there is no requirement for RSU privacy. 
In addition, any given RSU only needs to be able to generate a fairly narrow class of 
messages. For instance, there is no need for a TSVW RSU to be able to generate 
messages containing maximum curve speed. 

2.7 Attacker Capabilities 
In the traditional Internet Threat Model (ITM), it is assumed that the attacker has complete 
control of the network but limited control of the end nodes. Rescorla and Korver write [4]: 

The Internet environment has a fairly well understood threat model. In general, we assume that 
the end-systems engaging in a protocol exchange have not themselves been compromised. 
Protecting against an attack when one of the end-systems has been compromised is 
extraordinarily difficult. It is, however, possible to design protocols which minimize the extent of 
the damage done under these circumstances. 

By contrast, we assume that the attacker has nearly complete control of the communications 
channel over which the end-systems communicate. This means that the attacker can read any 
PDU (Protocol Data Unit) [message] on the network and undetectably remove, change, or inject 
forged packets [messages] onto the wire. This includes being able to generate packets that appear 
to be from a trusted machine. Thus, even if the end-system with which you wish to communicate 
is itself secure, the Internet environment provides no assurance that packets which claim to be 
from that system in fact are. 

Unfortunately, this model of attacker capabilities is not completely applicable to the VSC case. In 
particular, VSC OBUs will be very widely distributed -- in the best case, one in every vehicle -- 
and so we must assume that some units will become compromised. Moreover, the trust issues 
involved in VSC are substantially more complicated than those of traditional e-commerce 
systems. In ordinary Internet systems, once one has generally authenticated the peer, one can 
establish which messages it is permitted to send and ignore others. In the VSC system, however, 
there are situations where authenticated peers can send messages that are potentially legitimate 
but actually malicious. 
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In addition, it may be necessary to reconsider the assumption of complete control of the network. 
This assumption is not entirely realistic in the Internet setting and is less realistic in the VSC 
setting due to the characteristics of wireless data transmission. Depending on the security service 
that we are attempting to achieve, this may be an asset or a liability. 

Finally, we need to consider the likelihood that the VSC system will face multiple attackers with 
varying capabilities. Rather than design a system that must be immune to all attackers, we shall 
focus on designing a system that intentionally presents different levels of security to attackers 
with different capabilities. 

We consider four types of attackers, roughly in order of increasing capability: 

1. Attackers with a programmable radio transmitter/receiver; 

2. Attackers with access to an un-modified VSC unit (with an intact tamper seal), either OBU or 
RSU; 

3. Attackers who have access to a modified VSC unit and who have obtained the keying 
material; and 

4. "Inside" attackers who have access to records and equipment operated by the vehicle 
manufacturer or the VSC unit manufacturer. 

In the rest of this document, we will be referring to these attackers as "Class 1", "Class 2", etc. 

In the next four sections we describe each type of attacker and the type of attacks they might be 
able to mount. Note that we explicitly assume that attacks on the GPS satellites and base stations 
are outside the scope of this task. If an attacker can compromise GPS, the consequences will 
extend far past those on this task. 

2.7.1 Class 1: Attackers with Programmable Radio Transmitters/Receivers 
The most limited kind of an attacker is one with a programmable radio transmitter/receiver. This 
might be a modified 802.11 radio, a hand-built hardware device, or a software-defined radio. In 
any case, we assume that such an attacker can receive all VSC messages in his area as well as 
generate any number of legitimate-appearing VSC messages. He will also be able to broadcast 
with effectively unbounded signal power. 

Class 1 attackers do not, however, have access to any VSC keying material. Thus, essentially any 
communications security measures whatsoever will keep them from mounting forgery attacks. 
However, there are still a number of attacks they could potentially mount. 

Replay/Tunneling 
Although a Class 1 attacker cannot craft or modify messages, they can quite easily 
arrange for them to appear at a different point, either in time or space. Thus, an attacker 
can store a message and retransmit it at a later time, amplify a message so that it appears 
in a distant location, or both. Protecting against this attack clearly requires that receiving 
units have a verifiably correct idea of where they are and what the current time is and use 
that to reject expired or irrelevant messages. 

Denial of Service 
The most straightforward attack for a Class 1 attacker to mount is a DoS attack. The 
simplest kind of DoS attack for such an attacker is simple radio jamming. Since a Class 1 
attacker can have a network transmitter of essentially unlimited power, it is fairly 
straightforward to prevent all transmissions from being received. There are also a number 
of more sophisticated DoS attacks on 802.11 [5]. 
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In addition, it is very easy to perform "selective jamming" on an 802.11 system: the 
attacker listens to enough of the message to know if he wants to let it go though. If not, 
he transmits during the 2nd part of the message transmission. In this way, he controls 
what part of the overall state gets through. 

There are a large number of other potential DoS attacks. For instance, one could simply 
flood the network with transmissions. This will not only crowd out other valid 
transmissions but also potentially consume prohibitive amounts of CPU time on the 
receiving side as the receivers attempt to verify the transmission's validity. Finally, one 
could simply physically damage a unit so that it couldn't provide any service whatsoever.  

RF Fingerprinting 
Even a Class 1 attacker can mount a substantial privacy attack by means of RF 
fingerprinting [6]. Even in mass-produced units, radios have characteristic emissions 
profiles. It is generally possible to distinguish one radio transmitter from another by use 
of these emission profiles. Thus, an attacker who can observe the emissions of a given 
vehicle can then subsequently identify that vehicle by its transmissions alone. We will 
investigate the difficulty of this attack before the solution phase. 

Remote Compromise 
Even the best security implementations occasionally contain programming flaws. If those 
flaws are in the early message verification and processing code, then a Class 1 attacker 
might be able to compromise the security implementation and thus the VSC unit. Note 
that such an attacker could presumably only exploit code in the security layer, since it 
cannot generate messages that will pass the initial security checks. 

A remote compromise of this type can often be used to gain control of the entire unit. In 
such a scenario, the attacker would effectively be a class 3 attacker, but without needing 
to break the tamper seal. 

Remote Management 
It is expected that in some cases RSUs will be remotely manageable, either via the 
Internet or wireless channels. In such cases, there is obviously a concern that an attacker 
will send false management messages. This sort of remote authorization and access 
control is a standard security problem with many well-known solutions. The most 
appropriate solution will need to be determined during the solutions phase. 

2.7.2 Class 2: Attackers with Access to an Unmodified VSC Unit 
Unless measures are taken to control access, it will in general be very easy for attackers to obtain 
VSC units. Most likely the attacker can obtain an arbitrary number of OBUs from junked vehicles 
but, in the most expensive case for the attacker, they can simply buy them along with a used 
vehicle. Initially, the price per VSC-enabled vehicle will be high (because they are newer), but 
the price will come down quickly if VSC units are available in most new vehicles. 

Obtaining RSUs will probably be even easier, since it is assumed that they will be embedded in 
unattended roadside devices. Thus, our threat model needs to assume that an attacker will be able 
to obtain either an OBU or an RSU. In this section we consider the capabilities of a Class 2 
attacker, who has a VSC unit but has not broken the tamper seals in order to compromise the 
CPU or keying material. 
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Change of Location 
The most straightforward attack on an RSU is simply to move it. One might, for instance, 
take a stop sign transmitter and move it to another location, where it forces people to 
stop. This has a similar result to the tunneling attack described above, but is executed 
differently. It could potentially be combined with the indicator mismatch attack, 
described below. 

Indicator Mismatch 
A number of the infrastructure-to-vehicle services are designed to inform the user about 
the state of some piece of infrastructure. For instance, the TSVW application scenario is 
intended to represent the state of a traffic signal. Even if the VSC unit itself is 
undamaged, it is trivial for the attacker to change the state of the signal itself. For 
instance, one could rewire the traffic signal so it believes it is emitting a red signal but 
really is emitting green. 

The danger here is that users of VSC might come to rely upon VSC to get information 
about the state of the world. To the extent that there are multiple indicators, some VSC- 
based and some legacy, there is a potential for damaging misunderstandings. Consider, 
for instance, the following scenario, shown below in Figure 6. 

 

 
 

Figure 6: Signal/Message Conflict 

 

In Figure 6, Vehicle A is VSC-enabled and Vehicle B is not. The attacker has tampered 
with the traffic signal so that the RSU and the actual signal are out of phase. Thus, B has 
a green signal and A does not see a TSVW warning. If A has a careless driver, he might 
rely on the fact that he has not seen the warning and not notice that the signal was in fact 
red. There is thus a potential for a collision. It is worth noting that this sort of scenario 
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can be created even without VSC, simply by wiring both indicators to be green. 
However, to the extent to which users trust VSC and their behavior becomes more 
aggressive due to the fact that they know it is active, we might expect that the problem 
would be worse in the case of this attack. In addition, if this attack is mounted by making 
both lights green, this is immediately and visibly obvious, whereas it is less obvious to 
detect when the VSC and visual signals conflict. 

Sensor Spoofing 
In our strawman design, we assume that the physical sensors (accelerometers, brake 
sensors, radar, etc.) are outside the tamper boundary. As these sensors often need to be in 
specific, physical locations this seems very likely. However, this opens up a variety of 
possible attacks. Provided that the attacker can generate the correct sensor inputs, he can 
use the VSC unit as an oracle to generate whatever false messages he desires. 

A simple example of an attack using this technique can be found in the EBL service. The 
attacker modifies his vehicle to spoof the accelerometer and brake pedal sensors, and 
drives along the highway. He then waits until he is in front of the victim and sends 
braking signals to the OBU. The OBU, in turn, generates a valid emergency braking 
message over the air interface. The OBU behind the attacker receives the message, 
concludes it needs to brake, and informs the driver. 

GPS Spoofing 
Both OBUs and RSUs are potentially susceptible to a GPS-spoofing attack. Although we 
have assumed that the GPS is within the tamper boundary, GPS receivers rely upon radio 
transmissions to determine their position. With sufficient effort it may be possible to 
convince the GPS receiver that it is in an arbitrary location at an arbitrary time simply by 
supplying the correct signals to its antenna input. We will investigate the difficulty of this 
attack before the solution phase. 

If the attacker can use the GPS to convince the VSC unit that it is in a different location 
or at a different time, then he can use it to generate an arbitrary number of messages with 
a time and date stamp of his choice. There are a large number of attacks that can be 
mounted via this mechanism. GPS spoofing attacks are particularly damaging when 
combined with sensor spoofing attacks. With GPS spoofing, an attacker can mount the 
fake braking attack described above but without even being in his vehicle--or with a 
powerful enough transmitter, even in the area. 

2.7.3 Class 3: Attackers Who Have Recovered Keying Material From a VSC 
Unit 

No matter how good a tamper seal is attached to the VSC unit, a sufficiently dedicated attacker is 
likely to be able to extract the keying material. In addition, an attacker might be able to exploit 
bugs inside the VSC unit code to compromise the unit without violating the tamper.2  
Accordingly, we need to consider attacks in which the attacker has compromised a VSC unit and 
recovered the private key and/or whatever temporal keying material is inside. 

                                                      
2 It is not currently known how to extract the keying material of FIPS 140-1 level 4 certified tamper-resistant 
devices. However, it is expected that it is technically possible. Moreover, it is likely that level 4 protection will 
be cost prohibitive for VSC. 
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In general, a Class 3 attacker can mount any attack that a Class 2 attacker can mount.3  In 
addition, a Class 3 attacker can generate essentially any message that the VSC unit could have 
generated. 

Duplication 
The most important capability that a Class 3 attacker has that a Class 2 attacker does not 
is that he is no longer subject to the constraint that he needs the VSC unit. Thus, he can 
easily build any number of compromised units for the one time cost of breaking a single 
VSC unit. 

Physical Law Violations 
Another capability that a Class 3 attacker has that a Class 2 attacker does not is the ability 
to generate completely incoherent message sets. For instance, a VSC unit can be 
programmed to know that time cannot run backwards, whatever the GPS input says. 
Similarly, the VSC unit can be programmed to know that position changes that exceed 
500 mph are physically impossible and reject such input. Thus, one could conceivably 
program the unit with implausibility checks to refuse to generate messages that imply 
implausibly high velocities. The details of such filters should be investigated in future 
VSC-related work. By contrast, because a Class 3 attacker has access to all of the keying 
material, he can generate any messages he chooses, including those with implausible 
physical counterparts. 

Increased Ability to Compromise 
Another consequence of the Class 3 attacker's ability to generate any message is an 
increased ability to exploit programming errors in other VSC implementations. We 
expect that the first check that a VSC implementation will do upon receiving a message is 
to verify the MI/OA properties. Since other attackers have quite limited message sets they 
can generate, the chance that they can exploit bugs in the message processing code is 
fairly low. They must focus their attacks on the cryptographic code. By contrast a Class 3 
attacker can always generate a message that will pass the MI/OA check and thereby 
exploit bugs in the message processing code. 

2.7.4 Class 4: 'Inside' Attackers 
The final class of attackers is referred to as "Insiders." VSC units need to be manufactured, and 
an attacker who is employed by the OBU/RSU manufacturer would have substantial leverage to 
mount additional attacks. There are actually two groups of Class 4 attackers: authorized and 
unauthorized. An authorized attacker would be one who was operating with the consent of the 
manufacturer. An unauthorized attacker would likely be a disgruntled employee. Since the 
capabilities afforded to an authorized insider are a superset of those offered to an unauthorized 
insider, we will focus our analysis on authorized insiders. 

The primary additional capability that an inside attacker has is access to the KDC and the 
customer records. He can potentially use this to extract keying material or get a list of all units, 
their owners, and whatever identifying information is known. This allows him to mount a number 
of attacks. 

                                                      
3 One exception here is that one could imagine placing the radio inside the tamper boundary and hope that 
when the tamper is violated it disables the radio or at least alters its fingerprint. In such a case, a Class 3 
attacker could not mount Class 2 attacks if RF fingerprinting is used as part of the authentication system.  
We will not fully consider this issue here, since placing the radio inside the tamper is probably prohibitively 
expensive, and it is doubtful that fingerprinting technology is cost-effective to be used in every receiver. 
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Key Extraction 
In the strawman scheme of Section 3.5, an attacker who controlled the KDC would likely 
be able to obtain a copy of the current group key Ki. Such an attacker would effectively 
have the capabilities of a Class 3 attacker. Because this sort of attack is not in the interest 
of the manufacturer, we assume that this sort of attack is primarily limited to 
unauthorized attackers. Similarly, an attacker who purchases keying material from an 
insider can become a Class 3 attacker. 

Cryptographic Attacks on Privacy 
If the OBU/RSU manufacturer maintains a database of all units manufactured and their 
public keys, then an authorized attacker is in a position to mount a number of attacks. In 
the strawman scheme described in Section 3.5, the scope of these attacks is somewhat 
limited. Since all units use the same group key, access to the keying material does not 
allow unit identification. However, the attacker could still determine a user's rough 
location when they request a new Ki. Depending on how often Ki is changed, this might 
provide fairly high-resolution information. 

Some other cryptographic schemes provide much more information leakage. For 
instance, one commonly proposed scheme is Group Signatures [7,8]. In such schemes, 
there is an escrow agent that can map any signature to the private key that signed it. With 
such a scheme and a key-VIN database, a Class 4 attacker could potentially identify any 
entity. 

RF Fingerprinting Database 
If the manufacturer maintains an RF fingerprint of each unit, a Class 4 attacker would 
potentially be able to identify any unit by its fingerprint, as opposed to just tracing a 
given fingerprint, as a Class 1 attacker could. A database mapping fingerprint-to-VIN 
would be ideal for this purpose. The appropriate level of protection against this form of 
fingerprinting attack will need to be determined during the solutions phase. 

 

Attacker Type Attack 

Class 1 Replay/tunneling 

Denial of service 

RF fingerprinting 

Remote compromise 

Remote management 

Class 2 Change of location 

Indicator mismatch 

Sensor spoofing 

GPS spoofing 

Class 3 Duplication 

Physical law violations 

Increased ability to compromise other units 
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Class 4 Key extraction 

Cryptographic attacks on privacy 

RF fingerprinting (with database) 

Table 1: Summary of attacker types and attacks 

 

2.7.5 Some Out Of Scope Threats 
There are a number of attacks on the system that are out of scope for this task.  These are 
described below. 

Physical DoS Attacks 
It is clearly possible to mount a DoS attack on any OBU or RSU simply by depriving it of 
power, physically damaging it, destroying it, etc. The solution to this kind of problem is 
physical hardening. We will not address this kind of problem here. 

Radio Jamming 
As discussed in Section 3.7.1, it is quite possible to build a radio transmitter that will 
make the entire 802.11 network-- or specific units--unusable. Since we rely on the 802.11 
network, these attacks are out of scope for us. 

Attacks on the GPS System Infrastructure 
An attacker who could compromise the GPS satellites or base stations could easily 
change any unit's idea of position. We do not address security for the GPS system. At the 
present time, there is no way of authenticating GPS messages. However, we expect that 
units will need some set of heuristics to assist in detecting false GPS information. During 
the solutions phase we will attempt to determine some such heuristics. 

Software-Based Compromise of Units 
The OBUs and RSUs will contain software that processes network traffic. In many cases 
it is possible to mount attacks on such software that allows one to take over such systems. 
We advise that secure programming practices, such as those described by Viega and 
McGraw [9], be used when developing VSC units. As this kind of protection is a 
software issue and not a communications issue, it is out of scope for this task. Containing 
compromise of such units is, however, in scope. 

Misconfiguration (Accidental or Intentional) 
In many cases, RSUs must be configured when they are installed. For instance, a CSW RSU must 
be programmed with the characteristics of the curve that it is providing information for. In some 
such cases, the personnel in charge of inputting that information will make errors. Intentional 
misuse is also possible and should be guarded against. However, defenses against all such attacks 
are out of scope for this task. 

2.8 Containing Compromise 
Finally, we turn to the issue of dealing with compromised units. There are two basic strategies for 
containing compromise: 

• Proactively limit the capabilities of a unit in order to minimize the effect of compromise. 
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• Reactively contain a compromise once it has occurred. 

We consider each approach in turn. The purpose of this section is not to describe solutions but 
merely to explore the potential parameters of a solution and the implications of various design 
choices. 

2.8.1 Proactive Containment 
The basic principle of proactive containment is to limit capabilities. As described in Section 3.6, 
not all VSC units need to have the same capabilities. Since every additional capability that a unit 
has is a new capability that an attacker might employ, limiting unit capabilities proactively 
contains potential compromises. For our purposes, the two most important role separations are 
those of unit type and mobility. 

2.8.2 Discriminators for Compromised Units 
The reactive way to contain compromise is to identify and isolate compromised units. Strictly 
speaking, what we wish to achieve is not to identify compromised units but rather to isolate them. 
Thus, it is not necessary to identify which units have been compromised but merely to have a way 
to reject messages from such units in the future. Thus, what we concern ourselves with here is 
obtaining a discriminator – a piece of information which is sufficient to reject future traffic from 
such units. In general, however, it seems likely that such a discriminator will in fact be the unit's 
identity. 

The problem, then, is for the Security Officer to derive a discriminator. We consider several types 
of information which one could potentially use for this purpose: 

• Some set of messages that are deemed to be bad (apparently valid, but incorrect). 

• The identity of the compromised unit (e.g., a serial number). 

• The revealed private key of the compromised unit. 

• The compromised unit itself, if one has physical possession of it. 

Once the SO has derived a discriminator, the next stage is to somehow contain the compromised 
unit. There are a number of possibilities, ranging from simply telling the compromised unit to 
shut down (which only works with Class 2 attackers) to compiling compromised unit lists to 
denying the compromised units keying material. These options will be fully explored during the 
solution phase. 

2.8.3 Residual Capabilities of Compromised Units 
Our objective for containing compromised units is primarily to stop them from transmitting false 
information. However, compromised units will still be able to receive transmissions. As the 
current threat model does not include confidentiality, such attackers will have essentially the 
same capabilities as any Class 1 attacker. 
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3 Constraints 
3.1 Introduction 
This was the second step in the security effort for the VSC project. The first step described the 
VSC threat model: the capabilities of potential attackers and the types of attacks such an attacker 
might able to mount. This section describes the external constraints that a proposed solution must 
take into account.  

Any engineering project is a compromise between the desirable features of the design and the 
constraints on it. The threat model enumerates the desired goals. This section enumerates the 
constraints on the design.  The primary concern when introducing security is that it imposes 
additional overhead, for example: 

• cryptographically secured messages are larger than ordinary messages 

• hardened security modules are larger than ordinary computers and may consume 
more power 

• dedicated security processors are likely to add cost to units 

• security systems require management which may be expensive 

A security system design must take all of the related boundary conditions into consideration if it 
is to be successful, or it runs the risk of being un-deployable. Note that the constraints listed 
below are the most accurate that the security team was able to determine, though in some cases 
they are accurate only to an order of magnitude. The constraints described in this section 
represent boundary conditions only, and must not be interpreted as specifications.  They are 
accurate enough for this security study, but they are not meant to be used for any other purpose. 

Network characteristics – The VSC security solution must operate in a network environment 
defined by the DSRC protocols. The solution must operate within the communications and timing 
parameters provided by that network. 

Environmental characteristics – The VSC security solution is designed for deployment either in 
vehicles or as part of infrastructure devices. These environments present constraints in terms of 
power consumption, heat, form factor, etc. 

Cost of goods – VSC units, whether On-Board Units (OBUs), Road Side Units (RSUs), or 
Management Devices (MDs) must be manufactured. The cost of goods must be kept within 
certain acceptable limits. 

Management costs — The final VSC system will require management and maintenance, both of 
the system itself and of the deployed devices. Again, these costs must be kept within acceptable 
limits. 

In the remainder of this section, we consider each form of constraint. In Section 5, which 
illustrates a proposed VSC architecture, we will explore options for producing a system that 
provides the security guarantees described in Section 3 while still meeting as many of the 
constraints described here as is practical. 

3.2 Network Characteristics 
Vehicle safety communications will be operating over an 802.11-based ad hoc wireless network. 
The network operates at variable data rates, ranging from 3 Mb/s to 27 Mb/s. The range of the 
network is approximately 300 meters in light traffic situations and 800-1000 meters without 
traffic or obstructions. 
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3.2.1 Total Number of Units 
Security management overhead can depend on the number of total units in the VSC system.  For 
our purposes (and our purposes only), we estimate that there will be on the order of 109 units in 
the United States (four times the number of vehicles in the US today) and 1010 units in the world 
as a whole (about 1.5 times the world population today).  These are, of course, very approximate 
numbers.  They are best-guesses for the order-of-magnitude number of units, and they are 
accurate enough for the purposes of this security task. Since the system design must consider 
long-term interoperability, the security system must assume full deployment, even if this 
constitutes overkill at first deployment; one security system for low penetrations to then be 
retrofitted as the deployed population grows would be difficult and/or unmanageable. 

3.2.2 Maximum Data Rate 
The most basic constraint that we must accept is the data rate of the channel. This presents a hard 
upper bound on the amount of data that must be processed by a receiving VSC unit.  We assumed 
a maximum data rate of 6 Mb/s, which is the nominal rate of the "control channel" over which 
data related to safety applications will be flowing. The system should be able to handle bursts of 
27 Mb/s, but need not necessarily process it all in real time. 

3.2.3 Packets Per Second 
An additional boundary is the number of packets per second that an implementation must have 
the potential to verify. Given the above network constraints, we estimate that this number is 4000 
packets per second (pps) for a data rate of 27 Mb/s.[10] At 6 Mb/s, the packet rate is 
approximately 2500 pps. Note this need not necessarily happen in real time. Low priority 
messages may be handled out of order. 

3.2.4 Latency 
A critical question is that of latency. In order to be useful, application messages need to be 
delivered within a reasonably short time after they are transmitted. The exact time varies by 
application. Based on protocol research thus far, we assume a maximum allowable latency of 100 
ms, which would include all of the time between when the data to be sent from the sending 
vehicle is collected and when the receiving vehicle has an opportunity to react to the received 
data. 

However, the communications system itself introduces some latency. Thus, the total amount of 
latency introduced by the security layer must be less than the total allowable latency minus the 
communications latency. Based on results from the VSC protocol research activities, we estimate 
that communications latency is approximately 10 ms, and that we should conservatively design 
the security layer to have equivalent latency. Note that this is total latency, including both data 
transmission costs and data verification costs. 

There may be applications developed in the future that could benefit from the VSC units' ability 
to route messages.  In the instance of stationary RSUs, some RSUs may be physically connected 
to a network by wire, or occasionally through a management console, in order to receive 
information updates. This RSU could forward information to other RSUs within transmission 
range and request that the other RSU forward messages to yet another set of RSUs. In this 
instance, the RSU may know a priori which RSUs are its neighbors or will have sufficient time to 
discover them through some neighborhood discovery algorithm. The latency introduced during 
discovery and maintenance of routes in this RSU-RSU routing scenario should not impose 
constraints. However, packet forwarding does impose latency. We are assuming that no time-
critical applications will require RSU packet forwarding. 
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In the case of routing among stationary OBUs, applications may include the location of a vehicle 
in a large airport parking lot, finding a parking spot in a crowded city, etc. The main issue is that 
in stationary OBU-OBU routing, the latency introduced by neighborhood discovery and 
maintenance again must not create a problem. We are assuming that no time-critical applications 
will require packet forwarding by OBUs or of OBU messages. 

3.2.5 Packet Loss Rate 
DSRC provides a broadcast channel with no guarantee of delivery. Therefore, we must assume 
that some packets will be lost. Based on simulation results so far, a broadcast's effectiveness 
ranges from 80% to 50% for a range from nearby to 100 meters away, under stressful but not 
excessive channel conditions. Of course, these numbers are highly dependent on the actual 
parameters in the simulation, such as transmission power, packet size, vehicle density, etc. In 
general, it is unlikely for a broadcast to be more than 90% successful at the intended 
communication range under stressful load. Conservatively, we will assume an 80% packet loss 
rate. 

3.2.6 Packet Size 
In order to maximize bandwidth usage and reduce processing overhead, we need to ensure that 
the security layer does not add excessive overhead to packets. Based on simulations run during 
the VSC protocol research activities, we assume final packet size no larger than 200 bytes for 
most packets, with at least 100 bytes of that used for application data. Therefore, the target is to 
have no more than 100 bytes of security information carried in most packets. Note that this does 
not mean that packets larger than 200 bytes can never be used. Larger packet sizes may be 
valuable for setup and management purposes. However, the typical packet size for safety 
messages should be less than 200 bytes. 

Constraint type Constraint value 

Aggregate bandwidth                          6 Mb/s 

Maximum received packets/second 4000 

Maximum allowable latency 100 ms 

Maximum network latency 10 ms 

Maximum packet size 200 bytes 

Table 2: Summary of Network Constraints 

 

3.3 Environmental Characteristics 
The environments in which OBUs and RSUs must be deployed impose certain physical 
constraints. For instance, OBUs must be small enough to fit into a vehicle, must not draw too 
much power, etc. This section describes some potential environmental constraints for the 
purposes of this security study. Individual end-user requirements may differ. In general, these 
constraints will be different for OBUs and RSUs. 
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3.3.1 Unit Size 
RSU 
RSUs are embedded in a variety of devices. The smallest likely such device is a road sign 
or traffic signal. Thus, RSUs should be able to fit in a form factor approximately 30 cm x 
20 cm x 10 cm. This restriction applies to the entire VSC device, including security but 
not including antennas. We anticipate that RSUs will be able to mount substantial 
antennas in order to adapt to their installation environment. 

OBU 
As OBUs are fitted inside the vehicle, they need to be relatively small. OBUs should be 
able to fit in a volume of approximately 500 cm3. It is unlikely that they will need to be 
thinner than 1.5 cm. This restriction applies to the entire VSC device, including security 
but not including antennas. 

3.3.2 Temperature Range  
RSU 
RSUs need to be safely deployable in the most extreme weather conditions found in 
roadside environments. Therefore, they should be operable in the range -40 to +85 C. 

OBU 
OBUs need to meet the same temperature tolerance standards as other pieces of vehicle 
electronics and instrumentation. In general, this is -40 to +125 C. If necessary, it may be 
possible to place the OBU in a protected environment, in which case the operating range 
would be approximately -20 to +70 C. 

3.3.3 Heat Output 
RSU 
RSUs can typically be placed in ventilated environments. Therefore, the practical limits 
on RSU heat evolution are those for general purpose computers. We have somewhat 
arbitrarily chosen a target of 50W. 

OBU 
OBUs need to meet the same heat output standards as other pieces of vehicle electronics 
and instrumentation, which is on the order of 10W. 

3.3.4 Power Consumption 
RSU 
RSUs generally draw less than 100 W. The peripheral equipment (e.g., sensors) usually 
draws far more power than the radio unit, according to industry representatives from the 
DSRC standardization group. As solar powered units are generally installed where plenty 
of sun is available, they can be assumed to have plenty of power. We have somewhat 
arbitrarily chosen a target of 50 W for RSUs. 

OBU 
OBUs must run off the vehicle battery and alternator, like any other electronic device in 
the vehicle. Unfortunately, acceptable power draws vary widely. We are assuming the 
following parameters as typical, though of course each automaker has independent 
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specifications.  The numbers below are used only as boundary conditions and only for the 
purposes of this security study. 

Max current draw   30-100 mA 

Typical current draw 7  0% of max 

Sleep mode current draw (vehicle off) <1 mA 

Supplied voltage (vehicle off)  12 V 

Supplied voltage (vehicle on)  14 V 

Operating voltage  9-16 V 

 

Constraint RSU value OBU value 

Unit size (cc) 6000 500 

Temperature range (degrees C) -40 - +85 -40 - +125 

Heat output (watts)              unlimited 10 

Power consumption                unlimited 30-100 mA at 14 V 

Table 3: Summary of Environmental Constraints 

 

3.4 Cost of Goods 
The various devices in the system must be manufactured. The cost of these devices must be 
factored into the overall cost of the units in which they are embedded. This section discusses 
assumptions regarding those costs for the purposes of this security study only. 

3.4.1 RSUs 
Without security, road-side units used for currently-deployed systems such as toll collection and 
traffic monitoring cost about $10,000-20,000.  According to members of the DSRC standards 
writing group, efforts are currently being made to bring the price down to approximately $200-
$500 ($1000 for high-end units). Security should add less than $200 to the cost of the unit. 

3.4.2 OBUs 
The maximum acceptable cost of an OBU is assumed to be approximately $100, and security 
should add less than $50 to the cost of an OBU. Preferably, the additional cost would be less than 
$25. 

3.4.3 Management Consoles 
RSUs are expected to be field-manageable and perhaps remotely manageable. Field and office 
personnel will need to be issued management consoles. These management consoles need to be 
able to securely communicate with RSUs. The maximum cost of the management consoles should 
be less than $10,000. 

3.4.4 Service Consoles 
In some cases it may be necessary for service personnel such as auto dealers to maintain OBUs. 
Currently, service personnel are required to purchase substantial tooling from the manufacturers, 
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at costs of up to $10,000. Therefore, we believe that such OBU maintenance stations could cost 
up to $10,000. 

3.4.5 Manufacturing Facilities 
In order to avoid the construction of fake OBUs, OBUs must be manufactured in secure facilities. 
The security requirements for those facilities should not increase the fixed cost of facilities by 
more than 25 percent.  

3.5 Management Costs 
Any large-scale security system requires some management and this system is no exception. 
These management costs are borne by a variety of parties, ranging from OEMs to transit 
agencies. This section discusses assumptions regarding management costs for the purpose of this 
security study only. 

3.5.1 Investigation of Compromise 
Containment of compromised units is a design goal of the system. When such a compromise 
occurs, it is first necessary to derive a discriminator for the compromised unit. Such a 
discriminator can then be used to shut the compromised unit out of the system. The likely 
scenario is that a unit is compromised, and then the attacker uses the compromised unit 
maliciously. An investigation must then be mounted to derive the discriminator. 

The potential cost for such an investigation is naturally dependent on the size of the attack. For a 
major accident, we estimate the cost to be on the order of $20,000 for the VSC portion of the 
investigation (and misuse of VSC would have to be suspected for it to be investigated). For traffic 
disruptions, we roughly estimate that if a disruption is suspected of being caused by malicious use 
of VSC, the cost of the investigation would be less, perhaps on the order of $5,000. 

3.5.2 Key Infrastructure 
OBUs are likely created with their keying material installed, making management relatively 
simple. However, in the proposed model, RSUs generally will be using a conventional public key 
infrastructure. Thus, a hierarchy of authorities will be required to certify RSUs as well as other 
certificate authorities. The distribution of these costs depends on the PKI architecture. 

The topology of the PKI impacts on efficiency and ease of deployment. The PKI is primarily 
responsible for the issuance of digital certificates and revocation information. Certificate 
Revocation Lists (CRLs) are the most common form of revocation information. For RSUs, the 
naming structure is assumed to be hierarchical, based on geopolitical areas. For example, an RSU 
might have a name like C=US, S=VA, L=Fairfax County, CN=RSU 10048. A name like this can 
be accommodated under several different PKI topologies. We need to consider two major 
alternative architectures hierarchical and flat. 

Both Public Key Infrastructure topology options are described below. 

Hierarchical PKI 
The PKI topology mirrors the levels in the naming hierarchy. For example, the U.S. DOT 
might operate a CA for the top level, issuing certificates to each of the States. Then, the 
States operate CAs, and they issue certificates to each of the counties and cities within the 
State borders. Finally, the local governments operate CAs, and they issue certificates to 
the RSUs. 

This alternative appears to directly match the expectations of most people familiar with 
governmental structures. A single trust anchor is needed to represent each country. A 
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superior international organization could be created to serve as the top-level CA, but it 
would impose additional efficiency concerns. 

This hierarchal structure imposes a burden on the OBU. Using the above example, four 
signature validations are needed to verify a message from RSU 10048. They are: 

1. Validate the signature on the VA certificate with the U.S. DOT public key. 

2. Validate the signature on the Fairfax County certificate with the Virginia public 
key. 

3. Validate the signature on the RSU certificate with the Fairfax County public key. 

4. Validate the signature on the message with the RSU public key. 

Further, revocation information provided by each of the CA ought to be checked. If CRLs 
are employed, three addition signature validations are needed. Each of the CRLs ought to 
be small since each CA is not responsible for a large number of certificates. 

Deployment requires each of the superior organizations to be operational prior to a 
subordinate governmental entity. Therefore, Fairfax County cannot install their first RSU 
until the U.S. DOT and the Commonwealth of Virginia are both fully operational. 

Flat PKI 
A single CA issues all of the certificates within a nation, but the naming hierarchy is 
unchanged. For example, the U.S. DOT operates the CA for the top level, but it accepts 
requests for certificates and revocations from authorized registration authorities (RAs) in 
each of the States, counties and cities. The process for authorizing RAs will likely follow 
the natural governmental structure, but once authorized, the RA can communicate 
directly with the CA. 

All of the management concerns are transferred to the RA registration process. And, the 
CA is responsible for ensuring that one local government cannot request certificates that 
are affiliated with other jurisdictions. 

This flat structure reduces the burden on the OBU. Using the above example, two 
signature validations are needed to verify a message from RSU 10048. They are: 

1. Validate the signature on the RSU certificate with the CA public key. 

2. Validate the signature on the message with the RSU public key. 

Revocation checking can be problematic in this structure, since all of the revoked 
certificates are listed in a single CRL. While only a single signature is needed to validate 
the CRL, the number of entries on that CRL can become quite large. A large CRL takes 
significant bandwidth to download. This concern might be mitigated by performing the 
download at gas stations where the vehicle is stationary. 

Deployment only requires the national CA to be operational. Therefore, Fairfax County 
cannot install their first RSU before the Commonwealth of Virginia has installed any 
capabilities, assuming that the registration process can be accomplished by paperwork. 

This alternative has an additional concern. The national CA must be highly available. In 
the first alternative, the outage of any single CA has very little impact on the overall 
system, but in this alternative, an outage in the national CA can have major ramifications. 
Therefore, an architecture that includes concurrent operations from multiple physical 
locations is needed, making the national CA more expensive in this alternative. 
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3.5.3 Management of RSUs 
Unlike OBUs, RSUs require substantial management. For instance, a transportation agency might 
want to change the settings on a curve speed warning RSU in order to accommodate changing 
road conditions. This sort of remote management incurs costs. In general, management will be 
performed by personnel with minimal computing background training, and it must be performed 
quickly. Reprogramming an RSU with new parameters should be possible in less than 30 
minutes. 
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4 Architecture 
4.1 Introduction 
The previous two sections described the VSC threat model and system constraint assumptions. 
This section describes some of the possible architectural options for the VSC Security System. A 
full protocol based on these architectural elements is described later in Section 6 of this report.  

This chapter describes the high-level security architecture that was developed to address as many 
of the threats identified in Activity 2 as possible, while still fitting within the constraints 
identified in Activity 3.  The purpose of this security architecture development was to create a 
“cryptographic skeleton” design, showing the various communicating parties, the message flows, 
and the cryptographic transforms to be used.   

4.2 Architecture Summary 
The different privacy and security assumptions of RSUs/PSOBUs and OBUs result in different 
security strategies. A standard PKI strategy for RSUs/PSOBUs was assumed, and a variety of 
strategies for providing authentication for OBU messages were described. After much 
consideration, Anonymous Certificates were identified as the most promising OBU authentication 
strategy. 

Security that meets the requirements described in the threat model imposes significant 
constraints. With the currently proposed architecture, which includes many optimizations, each 
message transmitted would include significant overhead, and the message signatures would take 
time to process once they are received.  Management of a Public Key Infrastructure for RSUs 
would also be necessary, according to the proposed scheme.   

Two major decisions are: 

1. What PKI structure to use for RSU authentication, and 

2. Which signature algorithm to use for message authentication.   

ECDSA has been recommended, but it is not the only alternative. The protocol design proceeded 
assuming that ECDSA will be chosen, but with sufficient flexibility to allow future changes.  

4.3 Architectural Overview 
This section provides an overview of a proposed security architecture, which is then described in 
detail in subsequent sections. 

4.3.1 Key Hierarchy 
In order to preserve anonymity for OBUs while still allowing for fine-grained authority control 
for RSUs, VSC Security could use a dual authentication structure as shown in the figure below. 
Under this model, consumer OBUs would be authenticated via one set of mechanisms and all 
other units would be authenticated via another set of mechanisms. This is one possible answer 
proposed for the purposes of studying the implications of the model and its associated 
assumptions. 
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Figure 7: Overview of Dual Authentication Structure 

 

The figure above shows the proposed dual authentication structure. OBU authentication is 
conceptually simple: OBU manufacturers vouch for OBUs. The RSU authentication structure is 
the classic hierarchical PKI which maps to the existing political authority structure. National 
Certificate Authorities (CAs) vouch for Regional CAs which vouch for Local CAs, etc. 
Authentication of OBUs will be done via a privacy preserving mechanism that simply vouches 
for the fact that the unit is a valid OBU. Authentication of RSUs and public safety OBUs will be 
done via traditional public key and certificate mechanisms which have been tuned to work well in 
the constrained VSC environment. Each level of certification is increasingly restrictive. Thus, 
Regional CAs can only issue certificates for their own regions, local CAs can only issue 
certificates for their own localities, etc. This limits the amount of damage that compromise of a 
single part of the authentication hierarchy can do. We describe an alternate structure for RSU 
authentication in Section 5.3.1. 

4.3.2 Communications Architecture 
Like other communication systems, VSC is structured as a series of layers, as shown in Figure 8. 
At the top of the stack is the Safety Application Layer, which is responsible for handling safety-
related information. Next is the Security Layer, which is responsible for securing the safety 
messages. The bottom three layers, DSRC Messaging, 802.11 MAC (Media Access Control), and 
802.11 PHY (Physical layer), take care of the actual network data transmission. Messages which 
are being transmitted move down the stack from the Safety Application Layer to the airwaves. 
Messages being received move up the stack from the airwaves to the Safety Application Layer. 
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Figure 8: VSC Communications Architecture 

 

4.3.3 Message Authentication 
Once OBUs and RSUs have their keying material, they can then transmit messages using DSRC. 
When a unit wants to transmit a message, it first appends a timestamp and position indicator. 
These are derived from a trusted source and therefore must be appended by the security layer. It 
then applies a digital signature using its keying material and attaches the signature to the message 
along with some kind of key identifier (what kind of identifier depends on the architectural 
choices described below, but it is obviously some kind of bit string) and broadcasts the message 
to the receiver using DSRC. Note that we are omitting details like version numbers and algorithm 
and type identifiers in this presentation. 

 

 

Figure 9: A protected Message 

 

When a unit receives a message, it uses the key identifier to find the appropriate key to use for 
verification. The key identifier is typically either a certificate or a key index. If the former, the 
unit will verify the certificate. If the latter, the unit must already have the key in its cache – we 

                                                      
4 Note that there has been some discussion of introducing an intermediate channel selection layer in 
between the 802.11 MAC and the Security Layer.  The Security Layer does not  provide  any integrity 
protection for this layer. 
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assume for the moment that it is pre-loaded. (The following sections provide more detail on this 
point.)  Once the key is identified, the unit uses it to verify the signature on the message using the 
appropriate digital signature algorithm (again, this is covered in more detail later). All of this 
processing happens in the Security Layer. If the signature is invalid, the message is rejected. If 
the signature is valid, the receiver verifies that the key used to sign it has the appropriate 
permissions for the kind of message received. For instance, OBUs are not allowed to send Curve 
Speed Warning messages. This check may also entail verifying that this keying material is valid 
for this location. For instance, California RSUs should not be transmitting safety information in 
Denver. If any of these checks fail, the message is rejected. If they all succeed, the message is 
accepted for processing. 

4.3.4 Management, Revocation, and Updates 
Any security system needs periodic updates. These may include: 

• Updated/patched code. Even the best software inevitably has bugs. The traditional way 
to fix these bugs is to release new versions of the software with the bugs fixed.  Uptake 
of such patches is slow even with general purpose computers [11] and would most likely 
be minimal with vehicles if driver intervention is required – people just do not think 
about having to upgrade their cars. Therefore, a new approach will be needed. 

• Propagation of revocation lists. It may be necessary to publish lists of revoked (known 
to be compromised) units. 

• Keying material refresh. In order to minimize the scope of compromise and the size of 
revocation lists, it is desirable for units to periodically obtain fresh keying material. 

In order to fulfill these needs, it is necessary to have a mechanism for propagating relatively large 
chunks of data to users. This data would be authenticated via the same sort of mechanisms as 
ordinary messages, but would most likely not be structured as individual messages but rather as 
large files split over multiple messages in some fashion. These files will themselves be signed, 
using, for instance Cryptographic Message Syntax [13]. 

4.3.5 Fail-Open versus Fail-Closed 
Because our design requires that units be periodically updated, the question arises of whether 
units should continue to function when they are unable to receive updates. For instance, if a unit 
receives a message from a unit without having a current certificate revocation list, it cannot be 
sure that the message is from a valid unit and must therefore decide between accepting a 
potentially invalid message (failing closed) and rejecting a potentially important safety message 
(failing open). 

In this case, how to behave is an implementation decision, although the VSC protocol could 
require a fail-open or fail-closed behavior as a matter of policy. However, some designs 
inherently fail-open. For instance, if units need to periodically obtain new keys (e.g., as in the 
design described in Section 5.5.4.5), then they will be unable to transmit authenticated messages 
if they do not obtain new keying material, which could be more difficult in low-population 
density areas (depending on the flooding mechanism and available infrastructure). We believe 
that in general the system should adopt a fail-open policy. When there is a substantial question as 
to the validity of a message it should be rejected. 

4.4 RSUs and Public Safety OBUs 
RSUs and public safety OBUs have no particular anonymity requirement placed on them by the 
threat model and system constraint assumptions, and can therefore use a straightforward Public 
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Key Infrastructure (PKI)-style solution. PKI is not the only approach that would conceivably 
work, however it is a standard and well-understood security design, supporting systems as diverse 
as the Web e-commerce and the Department of Defense communications system. Using standard 
tools such as PKI allows us to avoid the risks attendant with any new security invention.  

In the RSU/PSOBU PKI system, each unit has an asymmetric key pair. The public key is signed 
by the local CA, and the units use their private key to sign all of their messages. Certificates 
contain restrictions indicating what sort of messages may be signed using the corresponding key. 

Note that upon initial examination it appears attractive to have RSUs do without keying material 
entirely and merely have them rebroadcast canned messages, e.g., "There is a stop sign at the 
following geographic coordinates". However, a number of RSU types (such as traffic signals) and 
nearly all public-safety OBUs are dynamic; they send different messages reflecting their current 
state. In order to support dynamic RSUs while still avoiding replay attacks, it is therefore 
necessary for the RSUs to have their own keying material and generate signed messages. 

4.4.1 Authentication Structure 
Conceptually, authority follows geographic lines of control and as one descends the certificate 
hierarchy, the scope of control for any given CA becomes smaller. Thus, for instance, 
Philadelphia would need Pennsylvania's approval (tacit or otherwise) in order to issue certificates 
to RSUs. This authority structure may or may not be reified in the certificate structure. In the 
Section 4, we considered two architectures, which we present here. 

The topology of the PKI impacts on efficiency and ease of deployment. It also has political 
ramifications. The PKI is primarily responsible for the issuance of digital certificates and 
revocation information. Certificate Revocation Lists (CRLs) are the most common form of 
revocation information. Imagine we have an RSU which has the following place in the hierarchy: 

Country US 

State  Virginia 

County              Fairfax 

RSU #  10048 

 

We need to consider two major alternative architectures hierarchical and flat. 

Hierarchical PKI 
The PKI topology mirrors the levels in the naming hierarchy. For example, the US DOT 
operates a CA for the top level, issuing certificates to each of the States. Then, the States 
operate CAs, and they issue certificates to each of the counties and cities within the state 
borders. Finally, the local governments operate CAs, and they issue certificates to the 
RSUs. 

This alternative directly matches the expectations of most people familiar with 
governmental structures. A single trust anchor is needed to represent each country. A 
superior international organization could be created to serve as the top-level CA, but it 
has many political issues, and it imposes additional efficiency concerns. 

This hierarchal structure imposes a burden on the OBU. Using the above example, four 
signature validations are needed to verify a message from RSU 10048. They are: 

1. Validate the signature on the VA certificate with the US DOT public key. 
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2. Validate the signature on the Fairfax County certificate with the VA public key. 

3. Validate the signature on the RSU certificate with the Fairfax County public key. 

4. Validate the signature on the message with the RSU public key. 

Further, revocation information provided by each of the CA ought to be checked. If CRLs 
are employed, three addition signature validations are needed. Each of the CRLs ought to 
be small since each CA is not responsible for a large number of certificates. 

Deployment requires each of the superior organizations to be operational prior to a 
subordinate governmental entity. Therefore, Fairfax County cannot install their first RSU 
until the US DOT and the Commonwealth of Virginia are both fully operational. 

Flat PKI 
A single CA issues all of the certificates within a nation, but the naming hierarchy is 
unchanged. For example, the US DOT operates the CA for the top level, but it accepts 
requests for certificates and revocations from authorized registration authorities (RAs) in 
each of the states, counties and cities. The process for authorizing RAs will likely follow 
the natural governmental structure, but once authorized, the RA can communicate 
directly with the CA. 

All of the political concerns are transferred to the RA registration process. And, the CA is 
responsible for ensuring that one local government cannot request certificates that are 
affiliated with other jurisdictions. 

This flat structure reduces the burden on the OBU. Using the above example, two 
signature validations are needed to verify a message from RSU 10048. They are: 

1. Validate the signature on the RSU certificate with the CA public key. 

2. Validate the signature on the message with the RSU public key. 

Revocation checking can be problematic in this structure, since all of the revoked 
certificates are listed in a single CRL. While only a single signature is needed to validate 
the CRL, the number of entries on that CRL can become quite large. A large CRL takes 
significant bandwidth to download. This concern might be mitigated by performing the 
download at gas stations where the vehicle is stationary. 

Deployment only requires the national CA to be operational. Therefore, Fairfax County 
cannot install their first RSU before the Commonwealth of Virginia has installed any 
capabilities, assuming that the registration process can be accomplished by paperwork. 

This alternative has an additional concern. The national CA must be highly available. In 
the first alternative, the outage of any single CA has very little impact on the overall 
system, but in this alternative, an outage in the national CA can have major ramifications. 
Therefore, an architecture that includes concurrent operations from multiple physical 
locations is needed, making the national CA more expensive in this alternative. 

Hybrid Alternatives 
Hierarchical and flat PKI topologies represent the extremes of a continuum.  Two 
mechanisms exemplify other points along the continuum: partitioned CRLs and indirect 
CRLs. Partitioned CRLs are used to ensure that CRLs never get too big.  The population 
of certificates is divided among a group of small CRLs, and the certificate contains a 
pointer to the CRL that needs to be checked for revocation.  For example, the first 1,000 
certificates issued point to one CRL, the second 1,000 certificates point to the next CRL, 
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and so on.  This ensures that none of the CRLs is ever larger than 1,000 entries.  Of 
course, most should be much smaller than the maximum. 

A better method of portioning the CRLs for the DSRC application is geographically.  
This allows an OBU to obtain and validate the CRL for a specific area as it enters it. One 
approach might be to partition the CRLs by ZIP code. Another approach would be to use 
the grid defined for the World Aeronautical Chart. Indirect CRLs allow one CA to issue 
the certificate and another to issue the associated CRL.  In this way, a national CA could 
issue each certificate, but the certificate would contain a pointer to the locally-
administered CRL that needs to be checked for revocation.  Certification path checking is 
a bit more expensive than in a hierarchical PKI, but revocation is handled locally. 

4.4.2 Certificate Format 
Because of the packet size limitations explained in Section 4.2.6, conventional X.509 certificates 
[12] are unsuitable for use with VSC Security. They are excessively large and there is a large 
semantic gap between X.509 distinguished names and the names which make sense here. 
Although it is in principle possible to shoehorn VSC information into X.509 certificates, the 
result would be fairly unwieldy. In addition, because interoperability with conventional PKIs is 
not a priority and we do not anticipate using the signature algorithms that are commonly used 
with X.509 certificates, there is no significant advantage to using X.509 rather than a custom 
format. 

In this section, we sketch the outlines of a certificate format for VSC Security but stop short of 
providing a bits-on-the wire description. VSC certificates consist of at least four data items: 

• The public key of the certificate holder. 

• The scope of the certificate. 

• The validity window of the certificate (expiry time). 

• A signature over the certificate. 

The public key of the certificate holder and the signature are straightforward cryptographic data. 
The validity window can be easily represented in one of a large number of more or less 
equivalent formats (UTC time, seconds since the epoch, etc.) However, the scope requires more 
discussion. 

Scope 
In RSU/PSOBU certificates all important authorization information in a certificate must 
be carried in the scope field. We are concerned with two kinds of authorization 
information: 

• Geographic – the physical regions during which this certificate may be used. 

• Functional – the types of assertions that the holder of this certificate can make. 

We discuss each of these kinds of scope in turn. 
Geographic Scope 

The purpose of geographic scope is to restrict certificates to the geographic regions for 
which their operators have authority. For instance, the California Transportation Agency 
would find it undesirable for the Illinois Transportation Agency to be able to install RSUs 
that broadcast information about California traffic signals, since this would mean that 
compromise of an RSU in Illinois would open up attacks in California. In order to 
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prevent this, each certificate must contain an indication of which geographic areas the 
certificate may be used in. 

We propose that these restrictions be encoded in one of three ways: 

• A radially symmetrical zone 

• A polygon 

• A sequence of rectangles 

The specification for a radially symmetrical zone is a single lat/long coordinate 
specifying the center and a radius of the zone. The intention is that this mechanism is 
used for immovable objects like RSUs. 

A polygonal restriction is a sequence of geographic locations (expressed as lat/long 
coordinates), which are then connected by straight lines in a connect-the-dots fashion. 
These points and lines define an enclosed region (or, perhaps, regions), which delineates 
the scope of the certificate. The certificate may speak for any point in that region. The 
intention is that this sort of scope will be used for CAs and PSOBUs. 

A sequence of rectangles represents a middle ground between a circle and a polygon. It 
allows a more complex region to be defined than does a circle, but allows less complexity 
than a polygon and is therefore easier for a receiver to evaluate. 

Note that there is some redundancy between the different representation formats. In 
particular, polygons can be used to emulate the other formats to a great degree. At the end 
of the day, experience may show that it is advisable to decide on a single format. 
However, initially we consider it wise to offer some variety for experiment. 

In principle, this technique can be used to define the validity region to an arbitrarily fine 
granularity. However, in practice the need to keep message sizes down requires that the 
number of points be kept relatively small. This inevitably creates some areas where the 
certificate restrictions do not precisely match geographic boundaries. In practice, we do 
not anticipate this being a problem since bordering regions in general need to be able to 
coordinate their activities. This sort of restriction is intended primarily to proactively 
contain compromise between distant geographic regions. One way to produce finer 
grained boundaries while reducing message size is to issue multiple certificates, which 
together cover the entire permitted zone. 
Functional Scope 

It is extremely desirable to restrict the uses to which a certificate can be put. For instance, 
rural traffic signals are often isolated and poorly monitored. If an attacker could 
compromise such a signal he or she should not be able to then use it to impersonate a 
police car. In order to prevent this kind of attack, certificates must contain functional 
restrictions. 

As with geographic scope, functional scope should be thought of as a tree, with 
restrictions becoming increasingly tight the further one moves away from the root. A 
proposed tree is shown in Figure 10. 
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Figure 10: Functional Scope for RSUs and Public Safety OBUs 

 

Note that it is possible – indeed likely – that a CA will sign other CAs as well as 
RSUs/OBUs. For instance, the California State CA might sign certificates for both the 
OBUs for the California Highway Patrol and for the county CAs. 

No Identities 
Note that unlike conventional certificates, DSRC certificates do not contain an identity 
string. All of the important authorization information is carried in the scope field and 
therefore we can save space by not including an identity payload at all. 

4.4.3 Registration and Certificate Issuance 
Any certificate system needs some way for units to get certificates. In VSC, these mechanisms 
fall into two categories: initial registration and certificate issuance. 

Initial Registration 
When a new PSOBU or RSU first enters the system, it is un-initialized and must be 
introduced to its CA. The introduction process creates a binding between some shared 
cryptographic credential and an entry in the CA database. For VSC, this is done one of 
two ways: either via direct connection or remotely. In either case, the first step is for the 
CA administrator to determine which permissions the unit should be allocated. This is 
done using non-technical mechanisms which are not specified by VSC. For instance, 
when initializing traffic signals, the CA administrator may be the person installing them 
or may communicate directly with the installer. 

In the direct connection case, the unit is fitted with an interface (e.g., USB or Firewire) 
and the administrator physically plugs the unit into the CA. The administrator then 
interrogates the unit for its public key and records that key in its database, bound to the 
unit's identity and permissions. 

In the remote case, the unit's public key (or more likely a digest of the public key) would 
be delivered along with the unit (for instance, embossed on the outside like a serial 
number). The operator of the unit would then tell the CA administrator the public key (or 
digest) and he would enter it into the CA database. Note that this process could also be 
performed via Web or some other remote access mechanism, provided that the unit 
operator authenticates to the CA. 
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Certificate Issuance 
Once the initial registration has occurred, the CA can then issue certificates for the unit. 
The certificate permissions are controlled by whatever settings are in the CA's database. 
The simplest way for certificate issuance to operate is for the CA to periodically issue 
appropriate certificates for the public key stored in the database. Alternately, the CA 
might require the unit to provide a new key but authenticate the request using the initially 
registered key. 

For RSUs, we anticipate that transit agency personnel would periodically visit the unit to 
install a new certificate. However, RSUs could potentially be refreshed over the Internet 
if network service is available. PSOBUs will likely have their certificates refreshed at 
their "home bases". For instance, when the vehicle is driven into the garage, it could 
establish a wireless connection with the local CA and get a new certificate. 

4.4.4 Message Authentication 
Once the keying material is established, RSU/PSOBU message authentication is accomplished by 
traditional digital signature techniques, in the flavor of CMS [13]. Each message has a digital 
signature attesting to its authenticity and an identity certificate attesting to the identity and 
permissions of the sending unit. The receiving unit can then verify the message and act 
appropriately. 

Message Format 
The PSOBU/RSU message format contains the following items: 

• Payload type identifier 

• VSC safety application information (payload) 

• Locally-unique message identifier 

• Timestamp 

• Position 

• Sender's certificate 

• Signature over entire message 

Note that the security system is completely blind to the contents of the safety payload. It 
only knows the type (for de-multiplexing on message receive). The Security Layer is 
simply responsible for verifying that the message is authentic. The VSC Safety 
Application Layer must then determine if the message is appropriate, as described in 
Section 5.4.4.3. Figure 11 shows such a message. The shaded sections are signed. 

 

 

Figure 11: A protected message 

 

Signature 
When a safety message is presented to the Security Layer for processing, it must perform 
the following stages: 
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1. Generate a unique message identifier. The intent of this message identifier is to 
uniquely identify this message among others sent by the same unit at the same 
time (in cases of insufficient time granularity). This identifier can be a simple 
short counter or can be generated by a random number generator [14]. 

2. Form a temporary message consisting of the message id, the payload, and the 
sender's certificate. 

3. Sign the temporary message. 

4. Append the message signature to the temporary message to form the final 
message to be transmitted. 

5. Pass the final message down to the DSRC Messaging Layer. 

This is a fairly conventional message processing procedure, roughly analogous to that 
used in IPsec ESP [15]. 

Verification 
When a unit receives a PSOBU/RSU message, it must first verify the authenticity of the 
message. This requires two sets of checks, one performed at the Security Layer, one 
performed at the Safety Application Layer. The Security Layer's job is to verify that the 
message is cryptographically correct. This means that it was correctly signed by a valid 
user. Verifying this requires verifying both the signature and the certification path. 

Each message contains only the certificate of the sender. In order to validate that 
certificate, the receiver must construct a path of certificates up to a trust anchor (a 
certificate which is trusted because it is built into the OBU). At each stage in that path, 
the recipient must verify that: 

• The signature on the certificate is valid. 

• The restrictions on the certificate allow the current use.  For instance, 
certificates for CAs (often called intermediate certificates) must be tagged as CAs 
and have the correct geographic scope for the certificate they are signing. Note 
that this means that the regional scope for any certificate must be entirely within 
the regional scope of its parent. 

• The certificate is current and not expired. 

• The certificate has not been revoked. 

Note that units are expected to cache verified certification paths, thus reducing the burden 
of re-verification for new certificates. For instance, once a unit has verified the Palo Alto 
Police certificate, it can verify any individual police car by using the cached path, and 
then checking the car's individual certificate. Once the certificate has been verified, the 
receiving unit must then verify the message. This is a simple matter of verifying the 
digital signature using the public key in the certificate. The fact that a signature is valid 
may be cached indefinitely, however the validity of the certificates must be checked 
whenever a new CRL is received or the current one expires. 

In order to prevent replay attacks, each message contains a timestamp which is generated 
inside the trust boundary of the transmitting unit. The Security Layer must maintain a list 
of all recently received messages (a window of 1-5 seconds is probably appropriate) and 
reject messages that either (1) bear timestamps outside that window or (2) have been 
replayed. The Safety Application Layer must also check that the position described in the 
message is within the geographic scope of the sender's certificate. 
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Once the Security Layer has verified the authenticity of the message, it passes it on to the 
Safety Application Layer for processing. The Safety Application Layer must then verify 
that the certificate that was used can be used to sign a message of this type. For instance, 
a Stop Sign RSU might sign a message claiming to be a Curve Speed Warning. This must 
be detected at the Safety Application Layer because the Security Layer does not have any 
visibility into the Safety messages. The Safety Layer must also verify that the message is 
geographically and temporally relevant (different applications have different relevance 
requirements).  Only if all of these checks succeed is the message accepted for 
processing. 

The intent of placing this processing in the Security Layer is to allow new applications to 
be deployed with their own validity requirements. An alternative design would be to have 
a Security Layer which accepted configurable policies for message validity. The Safety 
Layer could then describe which applications were to receive which policies and the 
Security Layer could enforce the correct policy based on the payload type field. 

4.4.5 Propagation of Certificates 
In order to verify a message, it is necessary to have the entire certification path up to a trust 
anchor. However, in general the entire path will be too large to fit into time critical messages. 
Therefore, there must be some mechanism to pre-load verifiers with these certificates. Because 
certificates are geographically restricted, there is a straightforward mechanism to arrange for 
certificate pre-loading. RSUs near geographic boundaries periodically broadcast the entire 
certification path for their region. The RSU could be Internet connected and periodically contact 
the CA for refreshed intermediate certificates or CRLs. 

Thus, when vehicles enter a new region, they automatically acquire the new certificates and cache 
them. Because these messages are not time critical, they can be fairly large, up to the maximum 
packet size of the network. In the event that the maximum size is too small, the certificates may 
be spanned across multiple network packets using the technique described in Section 5.5.2.2. 

4.4.6 Identifying Compromised Units 
Identifying compromised RSUs and PSOBUs is relatively straightforward. We need to consider 
three basic cases. First, we may know the real-world identity of a compromised unit, e.g., a serial 
number. It is expected that CAs will keep records of which units had which key pairs, and 
therefore it is straightforward to revoke that particular unit and to ensure that no future certificates 
are issued to that unit. 

In the second case, we may have captured some set of messages that are considered bad. Because 
certificates signed by PSOBUs and RSUs contain the certificate of the signing unit, we 
immediately can find the random identifier. This identifier can then be used as the key for a CA 
database lookup to find the real world identity of the compromised unit. That unit's certificate can 
then be revoked and/or the unit can not be issued any future certificates. 

Finally, consider the case where an attacker compromises a unit and anonymously publishes its 
private key. Although the user cannot be identified, we can still identify the compromised unit in 
two ways. First, the private key can be used to generate the public key, which can then be looked 
up in CA databases. Second, the private key must be used with the associated certificate. Once 
the certificate is found, compromise can then be handled as in the previous case. 
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4.4.7 Certificate Revocation 
In any PKI system, there are two basic mechanisms for dealing with compromised keying 
material: revocation lists and timeouts.5  Choosing which mechanism to use is a tradeoff between 
the cost of propagating certificate revocation lists and the cost of refreshing keying material. 
Where the best tradeoff is depends on the extent of compromise – and therefore of revocation – 
and the required level of timeliness. Because we cannot predict a priori the extent of 
compromise, the best option is to design a system that incorporates both methods of compromise 
containment. When a certificate expires, it can generally be refreshed using the certificate 
issuance mechanisms described in Section 5.3.3. However, revocation requires a new mechanism. 

Revocation lists are easy to create. They are simply a signed list of all of the non-expired keys 
which have been revoked. However, the lists must then be distributed. Because, like certificates, 
they are geographically bounded, they should be distributed at the borders of geographic regions. 
In the event that they are too large to fit into a single packet, they may be spanned across multiple 
packets, as with certificate distribution. 

4.4.8 Choice of Algorithms 
Although this is a traditional asymmetric key/digital signature system, a careful choice of 
signature algorithm nevertheless is required due to message size and performance considerations. 
Asymmetric signature systems differ along four dimensions that concern us: 

• Signature size (Ssig) 

• Public key size (Spub) 

• Signing time (Tsig) 

• Verification time (Tvfy) 

The first two parameters control the size of the signed messages. The second two parameters 
control the performance of the system, and thus directly impact latency. 

Message Size 
Any signed message must include: 

• The certificate (size Ssig + Spub + Srest) where Srest is the size of the identities, 
validity period, and restrictions and varies depending on the granularity of the 
geographic access controls but is constant across signature algorithms. 

• The signature over the message (size Ssig) 

Thus, the minimum size for a given signed message (with an empty payload) using a 
conventional signature scheme is 2 × Ssig + Spub + Srest. 

The magnitude of Srest depends on the granularity of the scope restrictions in the 
certificate. At minimum, Srest will contain a 32 bit time field. The scope field consists of a 
series of points defining the shape of the allowed geographic region. Each point will be 
approximately 8 bytes in length. Thus, a plausible value for Srest is 32 bytes (four points). 
A radially symmetrical zone will be smaller: 8 bytes for a point and probably no more 
than 2 bytes for a radius. Note that Srest is independent of the choice of cryptographic 

                                                      
5 In principle, one could also use an online status protocol such as OCSP [16], but in practice, such 
mechanisms are impractical in a broadcast situation. 
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algorithm. In the rest of this section, we will be discussing only the size of the 
cryptographic portions. An additional Srest bytes of overhead will always be required. 

Performance 
In order to send a message, the sender must perform a single digital signature, costing 
Tsig. In order to verify a message, the recipient must at a minimum verify the message 
signature (time Tvfy) and will likely have to verify at least the certificate signature (time 
Tvfy). If we assume that the rest of the signatures are cached, the total verification time is 
2 × Tvfy. Thus, the total latency introduced by security is Tsig + 2 × Tvfy. 

Message sending throughput depends entirely on signing time. Thus, a sending unit can 
transmit 1/Tsig messages per second. Message receiving throughput depends on 
verification time. Thus, a receiving unit can receive between 1/Tvfy and 1/2*Tvfy messages 
per second, depending on how many of the messages are from senders whose certificates 
have previously been verified. 

The actual performance of any algorithm depends on the processor it is running on. For 
reference, we quote numbers from the MIRACL library of Mike Scott running on a 450 
MHz Pentium III [17]. There's nothing special about this library, except that Scott 
provides measurements for a large number of different algorithms, thus enabling easy 
performance comparisons between algorithms. 

Patent Status 
Finally, we must consider the patent status of each algorithm. If OEMs must license 
patents in order to deploy the VSC security system, then this increases their costs. We 
provide a description of what we know about the patent status of the algorithms we 
describe.  This information cannot, however, replace a thorough legal search. 
RSA (Rivest, Shamir, Adleman) Algorithm 

RSA [18] is the world's most widely used signature algorithm. At the standard 1024 bit 
strength, it is fairly fast for signature (17 ms) and extremely fast for verification (.11 ms, 
public exponent=3). It would meet our performance targets with minimal hardware 
acceleration. 

The RSA verification step is extremely fast since it uses small exponents, so that even a 
fairly small ASIC core can easily meet the latency and throughput goals for verification. 
Fortunately, the RSA signature goal (i.e., 5 msec latency) can also be achieved 
reasonably easily. For example, a new Hifn chip uses slightly less than 100K gates in a 
0.13 micron CMOS process to achieve 388 RSA 1024-bit signatures/sec, running at 200 
MHz. This is a latency of under 2.6 msec. The same core can perform RSA 1024-bit 
verifications, using a 17-bit exponent (65537), with a latency of under 0.2 msec. An area 
of 100K gates, when added to an existing chip, currently results in an incremental silicon 
cost of under $0.50 in volume.  If this design were to be fabricated as a stand-alone chip, 
the packaging and testing costs would probably raise the per-chip cost to $2 – $4, in large 
volume.  The power consumption of such a core, at full duty cycle, would be (very 
roughly) on the order of 0.25 Watts.  

However, the RSA signature size is unworkably large.  At 1024 bits, Ssig = Spub = 
128bytes.6  Thus, the minimal cryptographic overhead for a message is 384 bytes.  It is 

                                                      
6 This assumes that everyone uses the same public exponent so there is no to add it to the public key.  If the 
exponent varies, add a few bytes overhead. 
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possible to aggregate multiple RSA signatures into a single signature[19] (and this 
requires using a non-standard form of signature) thus reducing the minimal overhead is 
256 bytes, which is still likely to be too large. 

There are no intellectual property costs associated with using RSA, because the patent on 
RSA [20] has expired. 
DSA (Digital Signature Algorithm) 

The other commonly used signature algorithm is the Digital Signature Algorithm (DSA), 
defined in Federal Information Processing Standard (FIPS) 186-2[21].  DSA is roughly 
twice as fast as RSA for signature (8.8 ms) but is far slower for verification (10.75 ms).  
Therefore, significant hardware acceleration would be required in order to obtain 
acceptable performance. 

DSA signatures are 40 bytes long, but the DSA public key is as large as RSA.  If a 
common parameter group is used, at a 1024 bit strength, Spub = 128bytes.  Thus, the total 
overhead is 208 bytes, less than RSA even with aggregation.  However, since our target is 
100 bytes, this is still larger than desirable. 

The major computational step in a 1024-bit DSA signature is a single modular 
exponentiation, with a 1024-bit modulus and a 160-bit exponent.  To first order, all other 
operations involved in the signature are only minor additions to this time.  Similarly, the 
dominating computation cost for a 1024-bit DSA verification consists of two such 
exponentiations.  A third-party vendor (Athena Group) currently offers a modular math 
core that can conservatively achieve the following latencies, running at 200MHz: 

1024-bit DSA signature 0.25 msec 

1024-bit DSA verify  0.50 msec 

The area is about 250K gates.  These numbers are all approximate and may end up 
slightly better or worse, depending on the silicon process and the time taken in synthesis 
and physical design.  In any case, these performance numbers meet the desired goals, and 
the incremental silicon cost of such a core would be in the $1-2 range.  As a stand-alone 
chip, the volume pricing would probably be in the $3-$6 range.  The power consumption 
would be very roughly on the order of 0.5 W. 

We know of two U.S. patents that are asserted to cover DSA.  U.S. Patent 5,231,668[22] 
and U.S. Patent 4,995,082[23].  The '668 Patent is assigned to the United States of 
America and is available royalty-free.  The '082 patent is not royalty-free.  There has 
been debate about whether or not the '082 patent is required for implementations of DSA 
and many vendors in the US have not obtained patent licenses.  A thorough analysis of 
this patent should be performed. 
ECDSA (Elliptic Curve DSA) 

As described previously, the primary problem with DSA is that the public key is too 
large.  Elliptic Curve DSA (ECDSA) is effectively DSA over an elliptic curve.  Elliptic 
curve algorithms such as ECDSA are as strong as integer algorithms such as RSA or 
DSA with smaller key sizes.  In particular, ECDSA is roughly as fast as DSA, but at the 
80-bit security level (equivalent to a 1024-bit RSA key) has only a 160-bit (20byte) key 
size.  The signature is the same size as DSA.  Thus, the minimum space overhead with 
ECDSA as the signature algorithm is 40 + 40 + 20 = 100 bytes.  It may also be desirable 
to use keys stronger than 160 bits for high-level CAs, thus providing increased resistance 
to analytic attack. 
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Elliptic Curve algorithms are not as widely implemented in silicon as RSA and DSA.  
However, we are able to make some estimates as to performance and gate costs.  We 
believe that we can achieve the target performance of 2000 ECDSA verifications per 
second using approximately 75,000 gates.  This should add a cost of about $0.30 / VSC 
unit and consume less than 0.2 watts.  See Appendix A for the reasoning behind these 
estimates. 

Certicom has asserted a number of patents on efficient implementations of elliptic curve 
cryptosystems [24].  The validity of these claims themselves should be investigated and 
appropriate patent licensing (as necessary) pursued. 

ECDSA can also be used in an "implicit certificate" mode where the public key and the 
signature are combined, thus reducing the space required to represent the public key. [25] 
This technique may be patented by Certicom. Again, we advise the pursuit of patent 
licensing as appropriate. 
BLS (Boneh, Lynn, Shacham) Algorithm 

Boneh, Lynn, and Shacham [26] describe a technique for using the Weil pairing to 
produce a very short signature (approximately 20 bytes). The public keys are of 
equivalent size. In addition, BLS signatures can be aggregated, so the minimal space 
overhead for security could be as low as 40 bytes. Unfortunately, BLS signature 
verification requires two pairings and is therefore extremely slow. Accurate numbers are 
not available, but our estimate is on the order of 40 ms (though two aggregated signatures 
can be verified at once, so this is the total overhead to verify one message). Very 
extensive hardware acceleration would be required to make the performance of BLS 
acceptable.  
Algorithm Analysis Summary 

We consider the best algorithm choice to be ECDSA. RSA and DSA have too large a 
space overhead to be practical in this application. Because BLS is very new and has only 
seen modest amounts of review, we do not believe it is appropriate to standardize on at 
this time. Thus, we recommend that ECDSA be chosen as the signature algorithm for 
RSUs and PSOBUs.  

4.5 Authentication for OBU Messages 
The situation with end user OBUs is more difficult than that with RSUs. Although the 
authorization problem is in principle much simpler (the OBU merely needs to establish that it is a 
valid OBU, rather than one with any particular set of characteristics), it is rendered much more 
difficult by the need to preserve privacy. In the rest of this section, we discuss the relevant criteria 
for deciding on a scheme and then describe a number of potential schemes for OBU 
authentication. 

4.5.1 Selection Criteria 
When deciding which approach to use for OBU message authentication, we need to consider four 
issues: privacy, performance (size and bandwidth), management complexity, and resistance to 
compromise. 

Privacy 
Beyond the desire for sender authentication, it is assumed in the threat model and system 
constraints that end user OBUs have an increased need for privacy. In this context, we are 
primarily concerned with two security properties: 
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1. Anonymity – it is not possible to determine a vehicle's identity from its 
transmissions. 

2. Unlinkability – it is not possible to determine that multiple transmissions were 
from the same source. 

Note that unlinkability is a stronger security property than anonymity, since a lack of 
anonymity automatically implies linkability. 

When considering these properties, we have to be concerned with two kinds of attackers: 
ordinary users and insiders (Classes 1-3 versus Class 4 in the terminology of our threat 
model).  For instance, it might be possible for OBU vendors to determine users' identities 
even if it is not possible for ordinary users to do so. 

Performance 
Authentication for end user OBUs has similar performance issues to those for RSUs and 
PSOBUs: time critical messages need to have small authentication tags, and both 
signature and verification must be quick. 

Containing Compromise 
As discussed in Section 5.3.6, identifying and containing compromised RSUs and 
PSOBUs is straightforward. Any bad message can be captured and used to identify and 
revoke the compromised unit. However, the requirement for privacy for end user OBUs 
makes containing compromise of such units more difficult. There are three important 
scenarios for detecting compromise and deriving a discriminator for the compromised 
unit. 

1. The investigator captures one or more messages using the compromised unit's 
keying material. 

2. The investigator discovers the private key of the compromised unit. This would 
be likely to occur if an attacker posted their private key on the Internet or if the 
investigator obtained a cloned unit. 

3. The investigator obtains the identity (e.g., serial number) of the compromised 
unit, perhaps by ordinary investigative work. 

Some of the schemes we will be considering allow compromise to be contained only in a 
subset of these scenarios. 

Note that we are primarily concerned here with containing compromise by Class 3 
attackers (those who have successfully broken their OBU). Class 2 attackers (those with 
un-tampered units) can be contained fairly simply by including a message identifier in all 
messages and incorporating an algorithm in each OBU that will shut down the unit on 
command. When a bad message is detected, an authority can broadcast via RSUs a 
shutdown message that says "whatever unit generated this message, shut down." One 
possible attack on such a shutdown command is to shield one's compromised OBU 
except when it is being used for live attacks. This attack can be countered by tying the 
shutdown command to system updates so that units must process it in order to remain 
active in the system. 

Management Complexity 
Finally, we need to consider operational issues. The number of end user OBUs will be 
very large and, unlike RSUs and PSOBUs, they are not directly managed by the 
authorizing agency, which in this case is their manufacturer under the proposed security 
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architecture model. Thus, management of the units becomes a serious issue. For instance, 
if a new software revision needs to be rolled out, some mechanism is needed for 
arranging that all the affected units get a copy. Additionally, when units are 
compromised, it may be necessary to publish revocation information. Unlike PSOBUs 
and RSUs, revocation information for OBUs is not geographically limited and, therefore, 
must propagate to all OBUs. Therein, this distribution problem is more difficult. 

4.5.2 Building Blocks 
The schemes described in the remainder of Section 5 of this document make use of a number of 
more or less standard primitives. We describe them here briefly for readers who may not be 
familiar with them. 

Broadcast Encryption 
In some of the schemes that follow, a number of OBUs share the same keying material. 
That keying material must be periodically refreshed, which requires the ability to send 
them encrypted refresh messages. This is isomorphic to a common problem encountered 
in the security literature: how to encrypt a single message to a large group of people with 
minimal overhead. The typical setting is that you have a large group of receivers of size 
N. You want to encrypt a message to all of these receivers with the exception of a subset 
of size r who are excluded. The naive way to do this is to have each receiver have a 
single key and separately encrypt to each receiver. This produces a very large message 
(linear in size N-r). 

A number of superior solutions have been proposed. The current state of the art is two 
schemes described by Naor et al.[27]. We describe their simpler Complete Subtree 
scheme here. 

We have a universe of N receivers, numbered from 1 to N, as in U1, U2, ... UN. Imagine 
each user as the leaves of a binary tree, thus U1 and U2 are under a common interior node, 
as are U3 and U4, and so on. A small example of such a tree with N = 4 is shown below. 

 

 
 

Figure 12: A broadcast encryption tree 

 

Each node in the tree is assigned a symmetric encryption key. Each leaf (a.k.a. “unit”) is 
given its own key plus all the keys on its path to the root. Thus, for instance, U1 has its 
own key, plus K0,0 and K0. In order to encrypt a message, the sender encrypts under a set 
of keys whose sub-trees cover the entire unrevoked set. 
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For instance, if no units have been excluded, the sender simply encrypts under K0, which 
is known to all units. Now consider what happens if U4 has been revoked. In that case, 
the sender encrypts under both K0,0 (known to U1 and U2) and under U3's key. 

The efficiency of this scheme declines when a large number of units are excluded. In 
general, the number of separate encryptions that the sender must perform (and hence the 
size of the ciphertext) is r log (N / r) blocks. However, it is never any worse than the 
naive scheme. This scheme requires log N keys worth of storage at each receiver. 

Naor et al. also describe a superior scheme called "Subset Difference". Subset difference 
is quite complicated and so we defer the discussion to Appendix C and simply state its 
properties. Subset Difference has a superior message size of 2r - 1 blocks but the tradeoff 
is increased storage at each receiver of 1/2 log2 N keys. In general, message size is more 
critical than storage, which is relatively cheap, so the VSC team suggests encrypting 
using Subset Difference. 

Erasure Codes 
Another common problem in broadcast/multicast networking is the need to send large 
chunks of data in an environment where packets may be lost. In point-to-point 
networking, this is handled with reliable data transfer protocols such as TCP [28], but the 
acknowledgements required by such protocols are inconvenient in a broadcast 
environment. A superior approach in these environments is to use erasure codes [29]. 

The idea behind an erasure code is straightforward. Say there is a message M, which is p 
packets long. Instead of simply breaking it up and broadcasting it in p packets, we encode 
it into a group of p’ packets M’1, M’2, ... M’p’. The encoding is done in such a way that 
any p-sized subset of the new packets is sufficient to recover M. The sender then 
broadcasts all p prime packets. Any receiver that receives an appropriately sized subset 
has received the message. 

In situations where the loss rate is known, one can simply choose an appropriately sized 
code and broadcast each of the p packets once. An alternative is to continuously and 
randomly broadcast packets. For instance, an RSU might continuously broadcast pieces 
of its certificate revocation list. Another possibility is to divide the fragments between a 
set of transmitting nodes in the system. Any unit that encounters enough other nodes will 
be able to reconstruct the message. 
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Figure 13: Erasure Code Transmission and Reconstruction 

 

The figure above shows an example. The sender starts out with a message M that is 6 
packets long. He then applies the encoding function to break it up into 8 packets. As long 
as the receiver has any 6 of those packets he can reconstruct the entire message M. In this 
case, packets 3 and 6 are lost, but the receiver gets the rest and then applies the decoding 
function to reconstruct M. 

The fact that such a function exists is sort of counterintuitive and may be easier to 
visualize with a simple example. Imagine that we want to transmit a number from 
0 to 7. This message can be encoded in three bits. 

Value Code 

----------------- 

0 000 

1 001 

2 010 

3 011 

4 100 

5 101 

6 110 

7 111 
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So, imagine that we break it up into three 2-bit messages, as shown in the figure below,  
so: 

 

 
 

Figure 14: A Trivial Code 

 

Thus, to encode the message 5 (101) we would transmit three packets (10,11,01). A 
receiver who received any two of these packets (provided he knows which one is which) 
can reconstruct the original message simply by reversing the encoding process. This 
example isn't very efficient but should be sufficient to illustrate the principle. 
Patent Status 

The dominant erasure code choices are subject to a large number of patents; many of 
which are held by Digital Fountain, Inc. We recommend that any anticipated users 
perform their own analysis of the patent status of this technology. 

Flooding 
Another issue for consideration is the distribution of files. Even if files are divided up 
using an erasure code scheme, the DSRC system is not one big network, but rather a 
series of small ad hoc loosely connected networks. Data is introduced into the system 
from a variety of points (typically RSUs controlled by the transmitting agent), and then 
must propagate to the relevant nodes. The naive solution is to have each node that 
receives the message rebroadcast it to all local nodes. This is obviously not optimal, and 
improved algorithms have been extensively studied, for instance in [22, 23]. The optimal 
flooding protocol for the VSC environment needs to be found/studied. 

Once we assume the existence of some flooding protocol, we need to consider that there 
are two kinds of messages: messages that must be broadcast to all units (revocation lists, 
for instance) and messages that must be transmitted to only some subset of units (e.g., 
software updates, which only apply to units from one manufacturer). The first class of 
messages is Globally Flooded using whatever flooding algorithm is finally chosen. 

The second class of messages may be transmitted by the Limited Flooding algorithm. 
Each message comes with a label (probably chosen out of a set of 100 or so), and units 
only listen for messages that fall into their label. For instance, software updates would be 
labeled by their manufacturer. This creates a set of overlay networks inside the main 
network each of which gets only the messages directed to it. Note that this leaks some 
information about unit identity, isolating it to the subset in which it is interested. 
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This sort of large-scale flooding network is not something that has seen extensive testing 
in field applications. Therefore, it is possible that there will be unpredicted problems. If 
such problems occur, it may be necessary to create a network of base stations that 
distribute data to OBUs. For instance, it would be possible to distribute updates at gas 
stations, where cars would be able to form a simple reliable network connection with the 
local RSU and download the update. 

4.5.3 Global Symmetric Keys 
If we want to preserve privacy, the simple approach is to have every valid OBU use the same key. 
Since all units have the same key, there are no additional benefits to using asymmetric 
cryptography. All units can simply use the same symmetric key that is then used by every unit to 
apply a Message Integrity Check (MIC) to each packet. (These are often called Message 
Authentication Codes (MAC) but we will use the term MIC to avoid conflict with the 802.11 
MAC layer.)  A recipient verifies a packet by recomputing the MIC and then comparing it to the 
message MIC. 

Privacy 
A global symmetric key scheme provides excellent privacy. As every message 
transmitted in the system is MICed with the same key, any given message could have 
been generated by any OBU in the system, thus providing both anonymity and 
unlinkability for the authentication portion of the message. 

Performance 
A global symmetric key scheme would have excellent performance. The only 
cryptographic operation in the critical path is a symmetric key MIC. MICs are very fast – 
approximately one million MICs/second were measured on a Pentium II/400. MICs also 
have extremely low space overhead – a secure MIC can be as small as 80 bits.  

Compromise Containment 
Compromise containment in such a scheme is handled primarily by changing the global 
key. Once a unit has been discovered as compromised, a new global key is generated and 
propagated to all uncompromised units. The key can be distributed using a standard 
broadcast encryption scheme as described in Section 5.5.2.1. If compromises occur 
frequently, key changes can be performed periodically rather than upon each 
compromise. Revocation lists are neither necessary nor useful for a global key scheme. 

Because all messages in this system use the same keying material for authentication, it is 
not possible to revoke a compromised unit based purely on messages that it sends. 
However, if the unit's private key is published or its identity is known, it can then be 
revoked. The worst-case compromise scenario for a global key scheme is an attacker who 
compromises a single unit and then anonymously publishes the global key after every 
update. Because the global key is the same for everyone, it will be very difficult to track 
down the attacker or determine which unit was compromised. Such an attacker could 
potentially compromise the entire system for a long period of time. The VSC team 
believes that this threat is sufficiently serious that it renders a global key scheme 
unacceptably subject to catastrophic compromise. 

There are variants of this scheme which somewhat limit the scope of compromise. For 
instance, you could use different keys for different geographic regions. However, because 
all symmetric schemes require that the sender and the recipient share keying material, 
they are all vulnerable to catastrophic failure to some extent. 
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Management Complexity 
The management complexity in a global symmetric key system is produced by the need 
to periodically refresh keys. Any single update has the complexity of a single round of 
broadcast encryption, as described in Section 5.5.2.1. In the most secure implementation, 
this complexity would be incurred every time a unit was compromised. However, in 
practice, key updates would likely occur on the order of every month or so. 

4.5.4 Public Key Signature Based Schemes 
In order to avoid the catastrophic failure modes described in Section 5.4.3, it is necessary to use 
public key cryptography of some kind or another. In this section, we describe a number of 
approaches that use classical public key cryptography. In the next section we describe an 
approach that uses a newer public cryptographic primitive called "group signatures". 

Simple Public Keys 
At the opposite end of the spectrum from a single global key, we can issue every OBU its 
own key and certify it using a PKI. The manufacturer of the OBU would issue these 
certificates. This scheme would be very similar to that described in Section 5.3 and, as 
with that scheme, would make use of standard, well-understood cryptographic 
techniques. 

Because the only important authentication in an OBU certificate is the fact that the named 
public key belongs to a legitimate OBU, OBU certificates can be even simpler than those 
provided to RSUs or PSOBUs, containing only three data items: 

• The public key of the certificate holder. 

• The identity of the signer of the certificate. 

• A signature over the certificate. 

If certificates expire, it may be desirable to have a validity period. However, the 
difficulties associated with obtaining new certificates suggest that it may be better to 
control compromise with CRLs only. In practice, however, if such a scheme were 
adopted it might be desirable to use the same format for both RSUs/PSOBUs and end 
user OBUs, and simply leave the useless slots empty or filled with some fixed data item. 
As we shall see, even with this system the privacy guarantees of this scheme are 
inadequate. We present it as a reference point against which other schemes can be 
compared. 
Privacy 

The privacy guarantees of this scheme would be quite limited. Because each message 
contains the certificate of the signer, it is trivial to link messages sent by the same sender, 
merely examine the certificate. This property is inherent in the system. One variant that 
improves the resistance to linkage is to issue multiple certificates to each OBU. If (say) 
each OBU had 1024 certificates and picked a new random certificate each hour, the 
ability for observers to link transmissions would be extremely limited. In order to enable 
compromise containment, however, the CA would need to maintain a list of which 
certificates have been issued to which OBU – or bind them together cryptographically. 
This would allow the CA to revoke all the certificates issued to an OBU once one 
certificate was discovered to have been misused. 

This scheme can provide limited anonymity. Because the identity of the OBU is not in 
the certificate, ordinary attackers cannot directly discover the identity of a vehicle from 
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its transmissions. Of course, if such an attacker is able to independently determine the 
identity of the owner of the OBU, they can then link that identity to the OBU's 
transmissions by observation. 

Anonymity against insiders is more limited. Because the manufacturer of the OBU knows 
which certificates were issued to which units, it is easy to work backward from any given 
transmission/certificate to determine which unit sent it. In principle, the CA could 
"forget" which units were issued which certificates, while maintaining information about 
other certificates were linked to it, however, it is unknown whether consumers will 
believe such a promise. 
Performance 

Performance of this system is equivalent to that described in Section 5.3. As with that 
system, performance is dependent on the underlying signature algorithm. Section 5.3.8 
describes the performance characteristics of the candidate algorithms. 
Compromise Containment 

Containment of compromise in a standard PKI scheme is straightforward. As with the 
PKI scheme of 4, each bad message contains the certificate of the signer. It is therefore 
trivial to identify the public key of the responsible unit. As before, once the public key is 
identified, it can either be placed on a certificate revocation list or the unit can be denied 
a new certificate once its current certificate expires. Note that both of measures can be 
taken without the CA knowing the identity of the OBU that has a specific key pair. 
Similarly, if the private key is compromised and published, it is useless without the 
certificate. Once the certificate is known, revocation is performed as in the case where a 
message has been compromised.  
Management Complexity 

The primary management problem with this scheme is arranging to deliver certificates 
and CRLs to the OBUs. Unlike the situation in Section 5.3, end-user OBUs do not 
regularly connect to a single base station and, therefore, cannot get updates from that base 
station. In order to make this scheme work properly, certificates will need to be 
distributed by a flooding mechanism, such as that described in Section 5.5.2.3. 

The costs for certificates and CRLs are different. Certificates must only be propagated to 
the appropriate OBU. Therefore, certificates can use a Restricted Flooding system. By 
contrast, CRLs must be propagated to all units in the system and, therefore, must use a 
Global Flooding system. The frequency of certificate refresh must therefore be tuned 
depending on the frequency of certificate revocation. 

Systems have been extensively discussed where there is no certificate refresh at all, and 
all compromise control is done with CRLs. The advantage of such schemes is that all 
units must receive the same CRL, and so there is no need to partition the certificate 
updates between relevant units. The disadvantage of this scheme is that if revocation rates 
are high, CRLs can grow very large. Despite that, it appears that this is a superior 
approach, especially as it drastically simplifies a number of the other schemes. 

Anonymous Certificates 
The scheme discussed in Section 4.5.4.1 has two primary problems: 

• A high level of linkability for any observer. 

• A lack of anonymity against Class 4 attackers. 
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As discussed previously, the second property is not a necessary security requirement, but 
merely an artifact of the way that certification works. If the CA could somehow 
verifiably "forget" the binding between public key and vehicle identity, then it would be 
possible to construct a system without this privacy problem. 

There are three major approaches for allowing certificates to be signed without creating 
such a binding. 

1. Simple administrative policy – the CA promises to forget. 

2. Blind signatures – the CA signs a certificate it cannot see. 

3. Role separation between the CA and the OEM – the OEM knows the identity but 
does not communicate it to the CA and is not allowed to see the certificate. 

The first option was discussed in the previous section. Although it is possible in principle, 
there is concern that users will not trust the manufacturer to avoid accidentally creating 
such a binding. Consequently, the remaining two alternatives are analyzed in greater 
detail in the sections that follow.  
Blind Signatures 

Blind signatures [24, 25] allow a signer to perform a digital signature on a message 
without knowing the message that is being signed. A blind signature on message M 
works as follows: 

1. The client (in this case the OBU) uses a signature algorithm-specific blinding 
function f and a randomly generated blinding factor B to compute M’ = f(B,M). 
He sends M’ to the signer. 

2. The signer (in this case the CA) signs M’ using the ordinary signature algorithm s 
and his private key K to produce Sig’ = s(K,M’). He sends Sig’ to the client. 

3. The client applies the inverse blinding function f-1 to compute Sig = f-1(B, Sig') = 
s(K,M). 

This protocol allows the CA to sign a message about which it knows nothing. In the VSC 
context, the OBU would generate a randomly chosen signature key and have the CA 
blind sign it. Thus, the OBU would obtain a certificate without having the CA know its 
identity. 

Note that because the signer has no idea what it is signing, blind signature systems are in 
general vulnerable to attacks in which the client provides a bogus plaintext to the signer 
for signature. For instance, the OBU might generate an RSU certificate. However, this 
form of attack is not a concern in this context (though we will need to deal with it in the 
next scheme) for two reasons. First, OBUs can be initialized at the factory, where the 
vendor can be certain that they have not been tampered with, and that they will thus 
provide valid messages for signature. Second, a separate OBU-only signing key can be 
used for this application. Because the only meaning of such a certificate is that it belongs 
to an OBU, the scope of attack even for a bad unit would be sharply limited.  
Role Separation 

An alternative approach would be to separate the authorization to issue a certificate from 
the certificate issuance proper. Imagine that the CA provides the OBU manufacturer with 
a "signature box". When that box is physically mated to an uninitialized OBU, it will 
issue it a certificate. The communication between the OBU and the CA is performed over 
a secure channel and, therefore, the OBU manufacturer cannot learn the OBU's 
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certificates. Because the CA does not know the OBU's serial number, it cannot be used to 
de-anonymize the OBU. This is just another form of administrative control.  
Multiple Certificates and Linkage 

As discussed in the previous section, in order to prevent linkage of transmissions it might 
be desirable to issue each OBU a number of certificates. However, because the 
certificates are blinded, it is no longer straightforward to revoke all of an OBU's 
certificates when one is compromised. In order to permit this mode of operation, we need 
to escrow the ability to link certificates. The general idea is that each OBU certificate 
contains a linkage value W, which can be used to link it to the other certificates issued to 
that OBU. W is computed as follows: 

First, each OBU generates a random symmetric key k. For each certificate i the OBU 
generates a cryptographically random value r[i] of length w bits. 

For each certificate i the OBU computes the following values: 

 W[i] = H(k,i) 

 h[i] = H(0 || r[i] || W[i] || LinkageMarkerString) 

 e[i] = H(1 || r[i] || W[i]) 

 B[i] = Encrypt(e[i], k) 

Where H() is a cryptographically secure message digest. Upon certificate issuance, the W 
values are embedded in the certificate, and the h[i], B[i] pairs are provided to the escrow 
authority. 

Thus, when a bad message is identified, the escrow authority can use the certificate's ^W^ 
value to recover the OBU's k, and generate the remaining W values. Note that this 
operation has been made intentionally expensive by the introduction of the r[i] value. 
Identifying the correct h[i] value requires exhaustively searching all possible values of 
r[i], which means on average of 2w-1 digest operations. This feature increases the cost of 
linkage, thus increasing privacy. r[I] can be made arbitrarily large, thus making the 
amount of protection tunable at OBU manufacturing time. 

The requirement to solve the r[i] "puzzle" in order to perform this linkage operation is 
intended to serve as a technical deterrent to casual privacy violations by making linkage 
expensive. 

Note that as long as one of the anonymizing schemes mentioned above is used to hide the 
identity of any particular OBU certificate, it is not possible to de-anonymize the OBU 
based upon certificates alone. All that is possible is to identify other certificates 
belonging to the same OBU. 
Privacy 

The privacy of this scheme depends on whether escrowed identities are used. If they are 
not, then transmissions are nearly anonymous, even in the face of Class 4 attackers. 
However, that means that each OBU can only have one certificate and, therefore, 
transmissions are highly linkable. 

Alternately, if multiple certificates are issued, then transmissions are no longer linkable 
via certificates, but identity escrowing must be employed to allow revocation of all of an 
OBU's certificates. The escrow authority can be separate from the OBU manufacturer, 
but ultimately it is straightforward to determine when two transmissions came from the 
same OBU (e.g., with a subpoena). However, as long as one of the de-linking schemes 
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mentioned above is used, it is not possible to de-anonymize the OBU via certificates 
alone.  
Performance 

Because this scheme only modifies the certificate issuing process, performance of this 
scheme would be generally equivalent to that described in Section 5.5.4.1, both in terms 
of time and space overhead. One difficulty is the choice of signature algorithm. The most 
common form of blind signatures is for RSA.  
Compromise Containment 

In general, compromise containment is done in the same fashion as that of 
Section 5.5.4.1. Once a compromised unit's public key is known it can be revoked. 

Because the CA does not see OBU's public keys during the certificate issuance process, 
OBU certificates cannot be easily renewed once they expire. There are two fixes for this: 

• Maintain a global certificate list, and 

• Rely solely on CRLs, thereby not employing certificate expirations. 

In the first strategy, OBUs would arrange to send copies of their certificates anonymously 
to the CA. The CA can verify that the certificates are validly signed and, if the public key 
has not been revoked, issue a new certificate, which is then distributed via the flooding 
mechanism of Section 5.5.2.3. 

Without certificate expiration, CRLs may quickly grow quite large, however at the end of 
the day it may still be simpler to choose this approach. 
Management Complexity 

This scheme may introduce new management problem of maintaining the global 
certificate list. However, because each OBU only needs to deliver its certificate to the CA 
once, the problem is not particularly severe. In general, the easiest way for this to work is 
to have a modest number of RSUs that capture certificates and forward them onto the 
CA, which maintains the list. Since every message is sent with a certificate, no special 
cooperation is required from the OBUs. 

If no global certificate list is maintained, this scheme has the same management 
complexity as ordinary certificates. 

Anonymous Self-Enforcing Certificates 

The previous two schemes allowed for linkage by the identity escrow agent. Thus, there 
is a risk that the identity escrow agent can be used to link any set of transmissions. Worse 
yet, if the identity escrow agent keeps records, then it can be used to de-anonymize 
transactions. We describe a complicated scheme for preventing such attacks here. 

In this system, each OBU Ui has a long-term symmetric key Ki. The CA maintains a 
global mapping of OBU identity to Ki. In order to get a certificate, an OBU must engage 
in an interactive protocol with the CA. Logically, this protocol has four stages: 

1. Ui demonstrates possession of Ki to the CA, perhaps by signing an initial 
challenge. 

2. Ui generates k key pairs I1, I2, ... Ik. 

3. The CA blind-signs certificates for all k keys. Each key has a one-day validity 
window. 
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4. Ui un-blinds the certificates. 

After this exchange, Ui has k days worth of certificates. It uses one certificate per day 
until all the certificates have expired, at which point it must re-run the protocol to get a 
new batch of certificates. 

Because the certificates are blind-signed and no longer contain Ui's long-term identity, it 
is no longer possible to revoke them based on a single bad message. In order to allow for 
compromise containment, we construct the key pairs so that they are self-enforcing. In 
DSA, ECDSA, and BLS, the private key X is 160 bits long and randomly chosen and the 
public key Y is computed from X. Instead of choosing X randomly, we choose it so that 
the top 40 bits contain the identity i of the OBU. Thus, if a private key is compromised, 
the identity can be extracted and no future certificates issued to Ui. 

In order to ensure compliance by the OBUs (who might not put their identities in the 
certificates) the protocol must be more complicated. The cut-and-choose [34] technique is 
used to enforce OBU behavior. Thus, we replace steps 2 and 3 above with: 

1. Ui generates 2k key pairs. 

2. Ui generates 2k unsigned certificates, 2 for each of the k periods, using the 2k 
keys generated in step 1. Call them C1

1, C1
2, C2

1,  ... Ck
1, Ck

2. 

3. Ui blinds each candidate certificate to get C’1
1, C’1

2, ... and sends the blinded 
certificates to the CA. 

4. The CA randomly chooses one of each pair (C’j
1, C ‘j

2 ) and asks Ui to reveal that 
blinded certificate. 

5. Ui sends the CA the original Cj
ls values, their blinding factors, and the 

corresponding private keys. 

6. The CA verifies that the unblinded certificates match their blinded counterparts 
and that the private keys correctly contain i. 

7. If all these things are true, the CA signs the other certificate in each pair and 
returns it to Ui. Otherwise, it adds Ui to the compromised unit list. 

8. Ui unblinds the signed certificates. 

This procedure is designed to minimize the probability that an OBU can get a certificate 
without its identity embedded. Consider what happens if the OBU omits its identity. 
Without loss of generality, assume that C1

1 is improperly formatted. There is a 50% 
chance that the CA will ask Oi to disclose C1

1, in which case Oi will be caught. The other 
half the time, the CA will choose C1

2 in which case the attacker will have a single key, 
which he can use for one day without revealing his identity. 

If the attacker wants to obtain more certificates with fake identities, the chance of success 
drops dramatically, halving with each additional false certificate requested. Thus, the 
probability that an attacker can obtain any significant number of untraceable keys is very 
low. This attack is dominated by simply compromising a unit that has just completed the 
key exchange protocol and, therefore, has k valid (though traceable) keys. 
Privacy 

As with the previous scheme, this scheme provides full anonymity for the certificates. 
Although the identity of the unit is known to the CA at the time of certificate issuance, 
there is no way to map this information to the certificate itself, as the certificate was 
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signed with a blind signature. Messages can still be linked within the lifetime of a single 
key but, as that lifetime is short, the severity of linkage is severely reduced. 
Performance 

The performance of messaging using this scheme is the same as that of the previous two 
PKI-based schemes. The management performance is worse, however, as discussed 
below. 
Compromise Containment 

Compromise containment in this scheme is worse than in the previous two schemes. 
First, the system cannot revoke certificates. Because the certificates are blindly signed, 
there is no way to determine which certificates are to be revoked. The only recourse is to 
not issue new certificates to the compromised unit in the future. It is not clear how severe 
this limitation is. If investigations take weeks to months, then the time from identification 
of the bad unit to key expiry might be small compared to the investigative time period. 

Second, the system can only contain compromises in the second two of the three cases 
described in 4.5.1.3. If the private key is published, the system can use the self-
enforcement property to determine the identity of the offender and not issue him future 
certificates. Similarly, if the system knows the identity i of the unit, it can simply refuse 
to issue it certificates in the future. 

However, if the only information that is available is some set of messages generated by 
the compromised unit, the scheme as described provides no way to contain compromise. 
Management Complexity 

This scheme is much more complicated to manage than the previous two schemes. In 
particular, it requires a periodic interactive exchange between OBUs and the CA. This 
exchange consists of two round trips with sizes shown in Table 4 below. 

Sender Message Size 

OBU C’s 2kSsig

CA request for C values k bits 

OBU revealed C k(Spub + values Ssig) 

CA signatures kSsig

Table 4: Message Sizes for Blind Signatures 

 

In the best-case scenario of a signature and key size of 20 bytes and k = 30, the OBU 
must send 2400 bytes to the CA and the CA must respond with 600 bytes. Moreover, this 
is a point-to-point (not broadcast) communication, so it would be necessary to design a 
mechanism for OBUs to communicate reliable with CAs, which the previous schemes did 
not require. Because the OBUs will generally not be within direct radio contact with the 
CA, the DSRC network will need to provide a method for routing traffic through to the 
CA, probably by routing to a connection to the Internet. This requires Internet gateways 
in a large number of locations. 
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Static Combinatoric Schemes 
Another approach is to use an adaptation of the cover-free broadcast encryption scheme 
described by Garay et al.[35]. This modification was first proposed by Jiang [36]. We 
have a set R, consisting of R key pairs and N vehicles. All public keys are known to all 
vehicles, and each key is assigned an index l. Each OBU Ui is assigned some random 
subset Si of R containing n keys. We assume that vendors know which keys were 
assigned to each OBU, which seems like the likely case.7

When a unit Ui wishes to send a message M it picks a key j (for the moment, assume that 
the transmitting key is chosen randomly and held constant until revoked) It then signs M 
with Rj and then transmits the signed message M, {M} Rj , j. To verify, the receiving unit 
looks up key j in its local key table and verifies the signature. 

Compromise is handled by compromised key lists (CKLs), which are globally broadcast. 
Whenever a bad message is detected, the key with which it was signed is added to the 
CKL. Units must verify that a given key is not on the CKL before accepting a message. 
Note that because any given unit has n keys, at minimum n bad transmissions from that 
unit must be observed before it can be revoked. If the attacker uses each key for the 
duration of the investigation, then he can use each compromised key for n investigatory 
periods. 

The properties of this scheme depends on the chosen parameters R and n as well as the 
size of the system N. N is an exogenous parameter set by the number of vehicles in the 
system. For our purposes, we use N of 109 (4 times the number of vehicles in the US). 
Given these parameters, we can easily determine: 

• The probability that any given vehicle will have a key Rl is n/R. The average 
number of vehicles with a given key is Nn/R. 

• The probability that any given vehicle is currently using Rl is 1/R. Therefore, 
the average number of vehicles using any given key Rl is N/R. Call this value C. 

• Once r keys have been revoked, the probability that a given innocent unit has 
been covered completely revoked) is approximately (r/R)n.  Thus, on average, in a 
system of size N, N(r/R)n units will be completely revoked. 

• The number of possible key subsets is approximately Rn if n << R. 

In order for this system to work correctly, at minimum it would be preferable that no two 
units, Ux and Uy, have the exact same key subset. Otherwise a revocation of Ux will 
automatically revoke Uy and this is very undesirable. The probability of a collision is 
about 50% if the number of subsets is N2. For safety, say that the number of subsets 
should be 10 × N2, which results in Rn = 1019 for N = 109.  
Privacy 

The privacy behavior of this scheme depends on the settings of n and R, which so far 
have only been partly constrained. In order to minimize linkability, it must be reasonably 
likely that two observed messages signed with the same key were not generated by the 
same unit. The definition of "reasonably likely" is fuzzy; semi-arbitrarily, the team deems 
a 50% probability that the message was generated by the same unit as “reasonably 
likely”. 

                                                      
7 It is not clear how to design a system that hides this information cryptographically, as opposed to with 
administrative controls. 
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Say that the system has observed a message M with key Rl, and Ui is currently known to 
be using key Rl (e.g. via a previously observed message signed with Rl), then the 
probability that Ui generated M has as its upper bound 1/C. In practice, the probability is 
far higher than this since vehicles are not homogenously distributed and tend to stay in 
given areas. In a closed area of size A, the probability becomes N/AC = R/A. In order to 
satisfy our linkability requirement, then, we require that R/A < 0.5. If we assume that the 
smallest area we are concerned with is 105 people, then R <= 2 × 105. Since Rn = 109, the 
minimum value for n is 4. 

One alternative is to have units choose random keys out of their available key set rather 
than use the same key for a long period of time. In this case, given that a unit Ui has 
known key Rl and the system then observes a unit using that key, then the probability that 
that unit is Ui is R/Nn. Again, partitioning the world into geographic areas results in the 
probability of that increases to AR/Nn. If n = 4, then R is potentially as high as 4 × 105. 
Note, however, that if a fresh key is chosen for each transmission, then a very small 
number of transmissions are enough to uniquely identify the unit, since it will quickly 
cycle through all its keys. Thus, each key must be retained for some moderate period of 
time, during which linkage is easy.  
Performance 

Both time and space performance of this scheme is excellent. The CPU cost is the usual 
cost of a digital signature. The space cost is the cost of the signature itself. Because keys 
are identified by indices, there is no need for certificates, thus the space overhead is 
roughly half that of the PKI schemes. Verification overhead is also improved because 
there is no need to verify a certificate, even on the first interaction.  
Compromise Containment 

The compromise containment scheme described here has two problems: 

1. It requires that a large number of bad messages (one for each key in the unit) be 
observed before any given OBU is completely revoked. For instance, if n=5, a 
Class 3 attacker who had compromised the unit could mount 5 major attacks 
before his unit is revoked. 

2. It is brittle when the number of compromised units is not very small. 

The first problem is obvious, but the second requires further discussion. Recall that once 
r keys have been revoked, the number of revoked innocent units is approximately 
N(r/R)n. Thus, after u units have been revoked, the number of revoked innocent units is 
approximately N(un/R)n. The figure below shows the number of revoked innocent units 
for R = 100,000, some plausible values of n, with N = 2.5 × 108, which is approximately 
the number of active vehicles in the United States.  

 

  
Appendix H  59 



 

 

 
 

Figure 15: Innocent Revocation Rates 

 

As is apparent above, when even small fractions of the total number of units are revoked 
(10,000 is only 0.004% of vehicles), the number of innocently revoked vehicles becomes 
completely unmanageable. Thus, a mechanism for re-keying is required. This result is not 
unexpected and parallels that seen by Garay et al. [35] 
Management Complexity 

If re-keying is not used, then management of the system is very straightforward. The only 
management required is distribution of CKLs, and these can be distributed by the 
flooding mechanism of Section 4.5.2.3. However, the management complexity of re-
keying is potentially highly problematic. This topic is discussed in the next section, 
entitled, dynamic combinatoric schemes, which requires frequent re-keying. 

Dynamic Combinatoric Schemes 
Given that a re-keying mechanism is necessary for any re-keying scheme, an alternative 
approach is to use a dynamic combinatoric scheme with frequent re-keys, as follows. To 
issue keys for K time periods, generate K universes of key pairs, R1 , R2, ... Rk, with S 
keys in each set Rk. Thus, within each universe Rk are keys Rk

1, Rk
2, ... Rk

S. For each time 
period k, the system generates S disjointed subsets of N, N1, N2, ... Ns such that ∪ from i 
Ni = N. A unit's membership could be represented as a list of set indices. For instance, 
(1,5,7) means that the unit was in R1 in time period 1, R5 in time period 2, and R7 in time 
period 3. In each time period k, all members of Ni are assigned key Rk

i. Thus, the example 
unit above would be given keys (R1

1 , R2
5 , R3

7 ). As with the previous scheme, each unit 
gets all the public keys. 

As with the static combinatoric scheme of Section 4.5.4.4, authentication is by simple 
digital signature. Each unit has exactly one key for any time period k and it uses that key 
for signature during that entire time period. If the original message is M and the unit has 
key Rk

i then the authenticated message is M, i, {M}Rk
i.\ 

Upon receipt, the recipient looks up the appropriate public key and verifies the digital 
signature. 
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Because each key is only used for a short period of time, this scheme has no support for 
certificate revocation. Instead, traitor tracing does revocation. Once a series of bad 
messages is observed, the issuing authority can figure out which unit was assigned those 
keys, and then refuse to issue future keys to those units. It thus takes at most k time 
periods from the discovery of compromise to cutting the compromised unit out of the 
system.  
Privacy 

As with the static combinatoric schemes, the privacy guarantees for this scheme depend 
on the system parameters, in this case S. The number of units who are using key i at any 
given time is N/S. Recapitulating the linkage computation from Section 5.5.4.4, the 
requirement becomes that A/S > 2 – the total number of key subsets must be smaller than 
the total number of vehicles in an area. For areas of 100,000, this results in S <= 50,000. 

Note that observation of transmissions from the same unit on multiple days quickly 
allows determination of the unit's true identity. In fact, this technique would likely be 
used to trace compromised units. However, this is of no help in linking it to future 
transmissions since it (almost) always shares keys with other units in the same area.  
Performance 

Both time and space performance of this scheme are excellent. The CPU cost is the usual 
cost of a digital signature. The space cost is the cost of the signature itself. Because keys 
are identified by indices, there is no need for certificates, thus the space overhead is 
roughly half that of the PKI schemes. Verification overhead is also improved because 
there is no need to verify a certificate, even on the first interaction. Alternately, the 
issuing authority can provide group certificates to key holders, thus making the message 
size the same as with a PKI system. 
Compromise Containment 

Purely refusing to issue future keys to compromised units achieves compromise 
containment in this scheme. Once a critical number of messages from a compromised 
unit have been observed (on multiple days), the identity of the unit can be determined and 
no future keys issued to that unit. Note that because each key is only valid for a very 
short time window, the attacker is forced to use multiple keys if he wants to mount a 
large number of attacks, thus leaking large amounts of information and enabling 
investigation and compromise containment. 

Note that in the worst-case scenario, compromised key lists can be used to provide fast 
update once an offender is identified. However, given that in general the window of 
vulnerability is a month or so, it is doubtful that this is worth doing. 
Management Complexity 

The management complexity of this scheme is primarily in the need to broadcast the 
periodic key updates. Consider the size of an update for a single time period. This update 
has two parts: 

1. S public keys. 

2. S keys encrypted for N recipients (N/S recipients per key).  

The first part of the update is of size approximately Spub S (1 megabyte for 20 byte public 
keys) and can be distributed by simple Global Flooding. Alternately, group certificates 
can be provided to OBUs along with their private keys. 
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The private key update is more difficult. Naively, it requires N separate encryptions, one 
for each OBU. However, this creates an unworkably large number of messages that must 
be transmitted. If the ciphertext size is the same as the key size Spub, then the total 
ciphertext size is Spub N (approximately 2 ×1010 bytes for N = 109 and 20 byte keys. This 
would need to be distributed by Limited Flooding, but is still quite expensive (about 1011 
bytes per month total). 

A superior approach is to use a broadcast encryption scheme, such as that described in 
Section 4.5.2.1. Assuming a very high revocation rate of 1%, then the ciphertext size for 
each key is 0.02 times N/S (8000 bytes for 20 byte private keys), with a total size of 4 
times 108 for each time period (1010 bytes for a month). Ciphertext size scales linearly 
with the number of revoked keys, so for a more reasonable revocation rate of 0.01%, the 
total size would be a mere 108 bytes per month. 

In order to enable this scheme, each unit would be constructed with its share of the 
broadcast encryption trees for its entire lifetime built into the unit. Each broadcast 
encryption tree share is of size 1/2 log2 N keys. For ordinary 128-bit symmetric keys, 
even if we change keys every day, 20 years worth of keying material can be stored in 25 
megabytes of permanent (read-only) storage. In practice, it is unlikely that it is necessary 
to have either this many separate groups or change keys this frequently. In practice, a few 
hundred different permutations chosen at random is probably sufficient. 

4.5.5 Group Signatures 
The final approach to consider is group signatures. Group signatures are a relatively new 
cryptographic primitive originally proposed by David Chaum [37]. A group signature scheme has 
a single public key P and a large number of private keys Ki. Each member of the group is issued a 
single private key, which can then be used to generate signatures that verify with P. Outsiders can 
only verify that a signature was generated by some member of the group but cannot tell which 
member. 

In general, group signature keys are distributed by a central authority. That central authority can 
determine which key pair generated any given signature. Although it is possible to hide the 
identity of any given key holder from the central authority, this capability allows the central 
authority to link multiple signatures by the same signer. When a key is determined to have been 
compromised, the central authority propagates an update to each verifier, which allows them to 
exclude signatures by that key. 

The best published scheme is by Ateniese et al [38], and is generally known as ACJT. 
Unfortunately ACJT signatures are approximately seven times the size of comparable strength 
RSA signatures. This makes AJCT unsuitable for this purpose. Boneh and Shacham are currently 
devising a superior group signature scheme, that may have comparable signature size to RSA, 
however, it has not yet been published or widely reviewed. General security practice very 
strongly discourages the use of new algorithms and, therefore, the VSC team cannot recommend 
this algorithm for deployment in any system until it has had a year or so of public analysis. 
Depending on the VSC timeline, this may or may not be an attractive option. 

4.5.6 Comparison of Schemes 
Seven schemes have been heretofore described, however, Global Symmetric Keys and Group 
Signatures can be excluded immediately. Global Symmetric Keys provide unacceptably poor 
containment of compromise and Group Signatures provide unacceptable performance, primarily 
in terms of message size. Similarly, Static Combinatorics can be excluded because Dynamic 
Combinatorics dominates it. 

  
Appendix H  62 



 

 

The remaining schemes are: 

• Simple Public Keys 

• Anonymous Certificates 

• Anonymous Self-Enforcing Certificates 

• Dynamic Combinatorics 

The choice between these four comes down to a tradeoff between privacy, management 
complexity, and containment of compromise. 

Simple Public Keys offers the lowest management complexity, however it provides only very 
weak privacy protection. In the best-case scenario, where OEMs do not keep track of the binding 
between OBU certificates and vehicle identity, anyone who obtains access to the CA linkage 
database (however maintained) can use it to construct a vehicle tracking system. Once a vehicle is 
observed once, all of its certificates could be identified and, thus, tracking is easy. In the worst-
case scenario, if the OEM maintains a vehicle/certificate binding, a vehicle can be identified from 
a single transmission. 

Anonymous Certificates offer a slightly larger management complexity, but if certificates are 
never reissued (only CRLs are used) this complexity is confined to the certificate issuance 
process. They have similar linkage properties to Simple Public Keys but offer superior protection 
against the identification of vehicles -- as opposed to certificate revocation -- from a transmission. 
As the no-re-issuance certificate model seems likely, the VSC team believes that the increased 
public confidence and auditability of these schemes justifies the additional management 
complexity at certificate issuance time. Role separation appears to be a superior option for 
implementing Anonymous Certificates. The complexity of certificate re-issuance strongly 
suggests that having certificates not expire at all and handling compromise purely through CRLs 
is the best approach, although some additional work needs to be performed to identify schemes to 
bound the size of the CRL as the number of OBUs grows very large.  

Anonymous Self-Enforcing Certificates provide superior privacy; they are not susceptible to the 
de-anonymizing attack described above. However, they provide inadequate compromise 
containment because they cannot be revoked based on transmissions but only on private key 
leakage. Because of these considerations, the VSC team considers Anonymous Certificates to be 
a superior alternative. 

The only plausible alternative to Anonymous Certificates is Dynamic Combinatorics. Unlike 
Anonymous Certificates, it cannot be turned into a tracking system because multiple OBUs 
always have the same public keys. However, Dynamic Combinatorics have a much higher 
management load than Anonymous Certificates in that they require regular updates of keying 
material that must be delivered precisely to specific OBUs (rather than globally broadcast). 
Moreover, the updates are much larger than CRLs are likely to be. There are also concerns that 
this scheme would be unworkable in practice. Accordingly, the design team recommends the 
Anonymous Certificates approach as offering the best combination of security, privacy, and 
reliability. However, given the benefits and liabilities of both of these schemes, and the potential 
privacy risks associated with certificate linkage, we feel it would be wise to subject these schemes 
to a detailed assessment in the context of the large vehicle population and the well understood 
vehicle life cycle, and retirement process. In addition it may be advantageous to explore some 
combination of these schemes to manage the size and growth of the CRL, while addressing the 
compromise of privacy and the management of the large number of retired OBUs. 

  
Appendix H  63 



 

 

5 Protocol 
5.1 Introduction 
The previous section described potential architectures and provided a recommendation from the 
team. This chapter provides a complete description of VSC Security Protocol (VSP), the 
enrollment procedures, suggested policy requirements, OBU privacy parameters, opportunities 
for optimization, and a summary of the syntax. 

5.2 Protocol Summary 
With the identification and description of a security architecture that appeared to meet the needs 
of vehicle safety applications (see Chapter 4), a security protocol was able to be created, based 
upon this identified architecture. Whereas the security architecture described the cryptographic 
skeleton, the protocol specification describes the contents and formatting of each protocol 
message, as well as the behavior of each communicating endpoint. The protocol specification 
could therefore serve as a basis for the eventual implementation of the system.  The architecture 
and protocol will be used to validate the requirements detailed earlier in this report by providing 
the DSRC standards writing group with a feasible solution. This chapter describes the security 
protocol that was developed in detailed protocol definition language, and ends in Section 5.8 with 
a complete summary of the syntax described throughout the chapter. 

5.3 Protocol Definition 
Security protocol is a structured approach toward providing descriptions of technical details. For 
clarity, the protocol is described using the protocol definition language used by TLS [43]. This 
section begins by describing the certificate and CRL format in the standard protocol definition 
language, followed by structured descriptions of the message format and a mechanism for 
propagation of system updates. Finally, it describes the procedures required for enrollment of new 
units in the system.  

5.3.1 Certificate Format 
Before units can authenticate to each other, they must first be issued credentials in the form of 
certificates. This section describes the VSP certificate format. In general, the team preferred not 
to invent a new certificate format, but the requirement to keep message sizes small ruled out the 
use of conventional certificate formats such as X.509. All VSP certificates use the same basic 
structure, as shown below: 
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     struct { 
             uint8              certificate_version; 
             SubjectType        subject_type; 
             CertSpecificData   type_specific_data; 
             Date               expiration; 
             CRLSeries          crl_series; 
             SignerID           signer_id; 
             PublicKey          public_key; 
     } UnsignedCertificate. 
 
     opaque[8]        SignerID; 
     uint16           CRLSeries; 
 
     struct { 
             select(subject_type){ 
               case ca: 
                 CAScope     scope; 
               case rsu: 
                 RSUScope    scope; 
               case psobu: 
                 PSOBUScope  scope; 
               case obu: 
                 LinkageData linkage; 
               case crlsigner: 
                 CRLSeries   responsible_series<2^16-1>; 
             } 
     } CertSpecificData; 
 
     enum {ca(0), rsu(1), psobu(2), obu(3), crlsigner(4), (255)} SubjectType; 
 
     uint16 Date; 
 
     struct { 
              SignatureAlgorithm algorithm; 
 
              select(algorithm){ 
                case ecdsa: 
                  ECDSAKey key; 
              } 
     } PublicKey; 
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     struct { 
             opaque point<1..2^8-1>; 
     } ECPoint; 
 
     enum { ecdsa(0), (255)} SignatureAlgorithm; 
 
     struct { 
             uint16               length; 
             UnsignedCertificate  unsigned_certificate; 
             Signature            signature; 
     } VSPCertificate 
 
     opaque    Signature<1 .. 2^16-1>; 
 

The certificate_version field contains the version of the certificate format. In this version 
of the protocol it is 1. Note that this applies to both UnsignedCertificate and the 
VSPCertificate structure. Accordingly, when parsing a certificate the recipient must first read 
the version number in order to know how to parse the remainder of the certificate. 

The subject_type field describes for what kind of entity the certificate is. Permissible types 
are ca(0), indicating a CA, rsu(1), indicating a RSU, psobu(2), indicating a PSOBU, obu(3), 
indicating an OBU, and crlsigner indicating that the holder of the certificate is authorized to 
sign CRLs. 

The expiration_date field contains the last date on which the certificate is valid. This is 
represented in days since the UNIX epoch. Expiration occurs at midnight GMT. 

The type_specific_data field contains information that is unique to this certificate type. 

The crl_series field contains an integer that represents which of multiple CRLs maintained by 
the CA this certificate will appear on if it is ever revoked. crl_series only have meaning 
within the context of a given CA. 

The signer_id field contains the identity of the certificate that the CA is using to vouch for this 
certificate. For certificates that are not trust anchors, the signer_id field must contain the high 
order 8 bytes of the SHA-1 hash of the CA's certificate. This allows for order 238 CAs to exist 
before there is an appreciable probability of hash collision. See Section 4.4.2 for information on 
trust anchor certificates. 

The public_key field contains the public key of the subject of the certificate. The 
PublicKey.algorithm field contains the algorithm for which the public key is to be used. The 
only currently defined algorithm is ecdsa (0), corresponding to the Elliptic Curve DSA 
algorithm specified in X9.31. Section 5.3.1.1 describes the format for elliptic curve public keys. 

The length field of the Certificate structure contains the length of the remaining structure (i.e., the 
combined length of the unsigned_certificate and signature.) 

The signature field contains a digital signature over the encoded unsigned_certificate 
value. 
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ECDSA Public Keys 
In order to specify an ECDSA public key, the protocol needs to first specify a curve and a 
point. This is done in the following structure: 

 

     struct { 

             NamedCurve        curve; 

             ECPoint           point; 

     } ECDSAKey; 

 
The “Curves” of the Key 

Although in principle each key can have its own curve, in practice it is more efficient to 
select a small number of curves. This approach also has the benefit that certificates are 
smaller, since they do not need to contain the curve description, but only a curve 
identifier of type NamedCurve. NIST has chosen some curves that are suitable for use in 
Federal applications, and a subset of those curves is supported here. Additional curves 
can be registered in the future if needed. 

 

     enum { 

          K-163(1), 

          B-163(2), 

          K-233(3), 

          B-233(4), 

          reserved (5..239), 

             private (240..255) 

     } NamedCurve; 

 

The enum names indicate the corresponding curve in the Recommended Elliptic Curves 
for Federal Government Use, dated July 1999. Values 240 through 255 are reserved for 
private use and will not be registered. 
The “Point” Of The Key 

The other part of an ECDSA key is the point (the public key itself). ECDSA points are 
expressed in the compressed format of ANSI X9.63 [50]. 

 

     struct { 

           opaque point <1..2^8-1>; 

     } ECPoint; 
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The ECPoint contains the byte-string representation of the point using the conversion 
routine of Section 4.3.6 of ANSI X9.62 [46]. All points are in a compressed 
representation. 

CA Certificates 
In addition to the standard certificate data, a CA certificate contains a scope field of type 
CAScope: 

 

     struct { 

             ApplicationID           applications<0 .. 2^16-1>; 

             SubjectType             unit_types<1 .. 2^8-1>; 

             GeographicRegion        region; 

     } CAscope. 

 

     struct { 

            ApplicationType     type; 

            ApplicationSubtype  subtype; 

     } ApplicationID; 

 

     enum  {cert_transmit(0), crl_transmit(1), (2^16-1)} ApplicationType; 

     opaque ApplicationSubtype<0 .. 255>; 

     enum  {fragment(0), (2048)} MessageFlags; 

 

The applications type indicates the application types for which this CA can issue 
certificates. If this field is empty, it indicates that the CA can issue certificates for any 
application. This type is structured. 

The type field contains the major application type. This is a 16-bit field, thus allowing 
65535 possible applications types. The VSCC will maintain a registry of different 
application types. Application types from 0xf000-0xff00 are reserved for private use 
but may be transmitted by production units. Types beginning with 0xff are reserved for 
private test networks and must not be sent by production units. Implementations must 
ignore message types they do not recognize. 

The subtype field provides application-specific information about the message type. This 
data is not parsed by the VSP protocol but is assumed to be passed up to the application 
program. The intent is to allow certificates and messages to contain finer-grained control 
information than is appropriate here. For instance, application X might allow multiple 
message types but some units might only be able to send some of those types. All of the 
application types defined in this document have zero-length subtype fields. 

The unit_types field lists the unit types (CA, RSU, PSOBU, etc.) for which this CA 
can issue certificates. If the unit_types field is empty, then it indicates that this CA can 
issue certificates for any unit type. This usage is not recommended. 
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The section “region” indicates the area in which the CA is allowed to issue certificates. It 
is encoded using the GeographicRegion type. 

Encoding a Geographic Region 

In VSP geographic regions are encoded using a GeographicRegion structure: 

 

     struct { 

             RegionType   region_type; 

 

             select(region_type){ 

               case polygon: 

               PolygonalRegion    polygonal_region; 

               case circle: 

               CircularRegion     circular_region; 

               case rectangle: 

                  RectangularRegion     rectangular_region<2^16-1>; 

             } 

     } 

 

     enum {polygon(0), circle(1), rectangle(2), (255)} RegionType; 

 

VSP supports a number of different region types. Currently, three are defined: polygon 
(0), circle (1), and rectangle (2). All region types with values < 240 must be assigned 
before usage. Values 240-255 will not be assigned and are reserved for private usage in 
test environments. Production units must not generate messages with these types: 

 

     PolygonalRegion        2DLocation<2^16-1>; 

 

The PolygonalRegion type defines a region as a series of geographic points. The 
region is specified by connecting the points in a connect-the-dots arrangement in the 
order they appear. The final point is connected to the first point. The implied lines that 
make up the sides of the polygon must not intersect. Receiving units should verify that 
lines do not intersect and reject any region that does. The allowed region is the interior of 
the polygon. 

 

     struct { 

            2DLocation   center; 

            uint16       radius; 
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     } CircularRegion; 

 

A CircularRegion is simply a circle with “center” at its center and a radius of “radius” 
meters. The allowed region is the interior of the circle. 

 

     struct { 

          2DLocation     upper_left; 

          2DLocation     lower_right; 

     } RectangularRegion; 

 

A RectangularRegion is a rectangle formed by connecting in sequence: 

1. (upper_left.latitude, upper_left.longitude) 

2. (lower_right.latitude, upper_left.longitude) 

3. (lower_right.latitude, lower_right.longitude), and 

4. (upper_left.latitude, lower_right.longitude). 

Note that the rectangular_region value is an array of RectangularRegion 
structures. This is interpreted as a series of rectangles. The permitted region is any point 
within any of the rectangles. 

RSU Certificates 
RSU certificates contain two scope indicators. First, as with CA certificates, they contain 
the geographic region in which the RSU is permitted to operate. Second, they contain an 
indication of which types of application the RSU is permitted to send messages for: 

 

     struct { 

             GeographicRegion        region; 

             ApplicationID           applications<0 .. 2^16-1>; 

     } RSUScope; 

 

The scope parameter is interpreted the same was as for CAs. The applications parameter 
contains a list of the ApplicationIDs that the RSU may generate. The RSU must not 
use this certificate to sign messages application IDs not on this list. If a recipient detects 
such message, it must reject it. Note that a given RSU may have multiple certificates with 
different application or geographic scopes. For instance, a traffic signal RSU might be 
enhanced to provide a maximum speed warning. It may be simpler to issue a second 
certificate rather than reissue the initial one. Whether to issue multiple certificates or a 
single certificate with multiple application IDs is a local policy issue. 

PSOBU Certificates 
The scope field of PSOBU certificates is effectively the same as the scope field of RSU 
certificates: 
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     struct { 

             GeographicRegion        region; 

             ApplicationID           applications<0 .. 2^16-1>; 

     } RSUScope; 

 

     struct { 

             GeographicRegion        region; 

             ApplicationID           applications<0 .. 2^16-1>; 

     } PSOBUScope; 

 

Note that it is quite likely that a PSOBU will have multiple certificates corresponding to 
different geographic regions. This is a straightforward way to provide permissions for a 
number of disjointed regions or to tile regions with a complicated boundary. The size and 
placement of certificate scopes is a local policy matter for the CA. 

OBU Certificates 
OBU certificates have some significant differences from other types of certificates. First, 
unlike CA, RSU, or PSOBU certificates, OBU certificates are all alike. The only meaning 
of an OBU certificate is "this public key belongs to an OBU". Thus, OBUs do not have 
any scope value, as the only important authorization is communicated by the fact that it is 
a certificate of type obu. 

OBU Certificate Linkage 

The anonymity of certificates presents a problem for revocation. Once a given certificate 
is implicated in a bad act, revoking it is straightforward. However, because each OBU 
has a large number of certificates, this does not substantially contain the compromise of a 
unit, as the attacker can simply use another one of the unit's certificates. Thus, it needs to 
be possible to revoke all of a unit's certificates when one is observed. The linkage field 
allows this mapping to be performed. 

Because the ability to revoke all certificates issued together is equivalent to the ability to 
link transmissions from a single unit, it must be impossible for generic attackers to 
perform this operation--the ability to link certificates is confined to a trusted identity 
escrow agency. This section describes a linkage token with the appropriate properties. 

We assume that the escrow authority has an ECDH key pair where the public key Y and 
group g,p is known to the OBU at certificate issuance time. We also assume an 
"anonymity work factor" w and that each OBU is issued n keys. Those keys are 
numbered from 1 to n. 

1. The OBU generates a cryptographically random key k of length 256 bits. 

2. For each certificate i (where i is the key number) the OBU generates a 
cryptographically random value r[i] of length w bits. 

3. For each certificate i the OBU computes the following values:                             
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 W[i]=AES-ECB(k,i) 

 h[i]=SHA1(0||r[i]||W[i]||LinkageMarkerString) 

 e[i]=SHA1(1||r[i]||W[i]) 

 B[i]=AES(e[i],k) 

 

where LinkageMarkerString is the ASCII representation of "VSP 1.0 OBU Linkage 
Computation". 

The encryption of B[i] is performed using the AES key wrap defined in RFC 3565[44] 
128-bit AES. The first 16 bytes of e[i] are used as the AES key. 

 

The h[i],B[i] pairs are encrypted under the escrow authority's public key. The exact 
mechanism is a local matter, however we recommend S/MIME. 

 

The linkage value for certificate i is given as: 

 

     struct { 

            opaque        enc_w<2^8-1>; 

            uint16       i_value; 

     } LinkageData; 

 

enc_w is simply the high order bytes of W[i]. Currently, implementations should use 10 
byte linkage values. 

 

i_value contains the i value for this specific certificate. 

 

When an OBU certificate is implicated in bad actions, we wish to be able to revoke all 
the certificates issued to that OBU. In order to do that, we need k. Given a LinkageData 
value, the escrow authority can determine k using the following algorithm. 

1. Decode the structure to recover W[i]. 

2. Exhaustively search candidate r[i] values until one is found that produces a 
known h[i] value. Note the use of the p in the h[i] computation. This is 
intended to assist in the detection of attempts to use distributed computation 
networks to perform this operation. 

3. Form e[i] and decrypt k. 

In order to revoke a unit the CA simply publishes its k value on the CRL. Any receiver 
can easily compute the relevant W[i] values. 

The choice of w is a tradeoff between work to recover from compromise and privacy 
protection. 
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CRL Signer Certificates 

A certificate of type crl_signer indicates that the holder of this certificate is entitled to 
sign CRLs for this certificate authority. The responsible_series array contains all of 
the CRL series for which this CRL can sign. 

 

5.3.2 Certificate Revocation List Format 
VSP uses two kinds of CRLs, one for non-anonymous units such as CAs, RSUs, and PSOBUs 
and one for anonymous units such as OBUs. However, both CRLs have the same basic structure, 
which combines both regular CRLs and delta CRLs. 

 

     struct { 

             uint32           length; 

             UnsignedCRL      unsignedCRL; 

             Signature        signature; 

     } OrdinaryCRL; 

 

     struct { 

             CRLSeries        crl_series; 

             SignerID         certificate_type; 

             SubjectType  entry_type; 

             uint32           crl_serial; 

             Date             last_crl; 

             Date             this_crl; 

             Date             next_crl; 

             CRLEntry         entries<2^64-1>; 

 

             SignerInfo       signer; 

     } UnsignedCRL; 

 

     struct { 

             select(certificate_type){ 

                     case ca: 

                     case psobu: 

                     case rsu: 

                         CertificateHash  cert_hash; 

                     case obu: 
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                         OBUCRLLinkage    obu_link; 

               } 

     } CRLEntry; 

 

The ca_id field contains the CA for which this CRL is being issued. 

The crl_series represents the CRL series that this CRL is for. 

The certificate_type indicates the kind of certificates that this CRL is for. 

The crl_serial is simply a counter that should increment by 1 for every issued CRL by that 
CRL issuer. 

The last_crl and this_crl fields specify the time period that this CRL covers. Thus, any 
certificate that was revoked between last_crl and this_crl must appear on the CRL. Note 
that there is no requirement that the time windows represented by any two CRLs not overlap. 
This allows the issuance of delta CRLs or sliding window delta CRLs [45]. 

The next_crl value contains the time when the next CRL is expected to be issued. See Section 
5.3.4.5.6 for discussion of the behavior of recipients with respect to CRLs. 

Entries contains a list of the certificates that were revoked during this time period. 

As usual, the signer field specifies the public key used to sign the CRL. There are two 
possibilities for the CRL signer: 

1. It is the CA that originally issued the certificate. 

2. It is a CRL signer authorized by the CA to issue CRLs. 

In the latter case, the signer field must be of type certificate and the certificate must be of type 
crlsigner. That certificate must be directly signed by the original CA contained in the 
signer_id. The responsible_series field of the certificate must contain the value of the 
crl_series field of the CRL. 

The length field of the OrdinaryCRL structure contains the length of the remaining structure (i.e. 
the combined length of the unsigned_crl and signature. 

The signature field contains a digital signature over the encoded unsigned_crl value. 

Partitioned CRLs 
In order to keep down the size of individual CRLs, it may be desirable to maintain 
multiple CRL series for any given CA. Accordingly, a CA might break up the CRLs it 
issues into units of (say) 10000 certificates, each of which is issued on its own CRL 
series. Thus, a receiver would only need the relevant CRL for the certificate it was trying 
to verify rather than all CRLs for a given CA. The crl_series value is intended for this 
purpose. The number of CRL series and the partitioning of CRLs into a individual CRL 
series is a local matter for the CA, with one exception: OBUs must be randomly assigned 
to CRL series so that the CRL series in an OBU certificate does not leak information 
about the vehicle identity. 

Non-Anonymous CRLs 
In non-anonymous CRLs, used for all units besides OBUs, the certificates on a CRL are 
specified by CertificateHash . 
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     opaque CertificateHash [10]; 

The CertificateHash must be the high order 10 bits of a SHA-1 digest of the revoked 
certificate. 

Entries on a non-anonymous CRL must be sorted in increasing order of SHA-1 hash. 
Comparisons are done in big- endian format, treating the first byte of the SHA-1 hash as 
the most significant bit and each successive byte as less significant. This allows the 
receiving unit to do a binary search to determine if a certificate is on the CRL. 

Anonymous CRLs 
In the case where the revoked unit is an OBU, the CRLEntry contains an 
OBUCRLLinkage value: 

 

     opaque                OBUCRLLinkage <1 .. 2^8-1>; 

 

The OBUCRLLinkage simply contains the unit key k, described in Section 5.3.1.5.1. 

Note that the process of verifying whether an OBU certificate is on a CRL is modestly 
computationally expensive: it requires precomputing the linkage values for all the current 
revoked units for the value of i in the certificate. In general we expect that units that need 
to verify OBU signatures will have an AES accelerator. Currently available cheap AES 
cores can perform on the order of 108 AES operations per second and could therefore 
check a million revoked OBUs in .01 s. Implementations may choose to cache known to 
be valid certificates once this check has been performed. 

 

5.3.3 VSP Message Format 
There are two kinds of messages that are transmitted over the air in the VSC system: 

• Safety messages 

• Updates 

However, both kinds of message have a common format: 

 

     enum { signed(0), (255)} MessageType; 

 

     struct { 

            uint8                   protocol_version;  /* 1 for this version */ 

            MessageType             type; 

            opaque                  message<2^16-1>; 

     } VSPMessage; 
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The protocol_version contains the current version of the protocol. The version described in 
this document is version 1, represented by the integer 1. There are no major or minor version 
numbers. 

The type field contains the type of the message. This tells the receiving unit how to interpret the 
message body. 

Currently the only defined types is signed (0) indicating a signed message. This leaves room for 
up to 254 other message types. All message types must be standardized before they may be used 
in real systems. Message types from 240 through 255 will not be assigned and are reserved for 
private usage in test environments. Production units must not generate messages with these types. 

The message field is simply a block of bytes. These bytes are interpreted according to the type 
field. In particular, if the type field is signed then the message block is a SignedMessage, as 
specified in the next section. 

 

5.3.4 Signed Message Format 
Most of the messages in the VSP system are of type SignedMessage. The full PDU on the air 
thus looks something like the figure below: 

 

 

Figure 16: Subset difference broadcast tree 

 

The specification for a SignedMessage is: 

 

     struct { 

            ApplicationID     application; 

            opaque            flags<0 .. 2^8-1>; 

            opaque            application_data<1 .. 2^16-1>; 

            opaque            message_id[2]; 

            Time              transmission_time; 
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            3DLocation        transmission_location; 

            SignerInfo        signer; 

     } ToBeSigned; 

 

     struct { 

            ToBeSigned        unsigned_message; 

            Signature         signature; 

     } SignedMessage; 

 

     uint64               Time; 

 

The application field contains the type of message being transmitted. 

The flags field contains message-specific flags represented as a big-endian integer. A flag is set 
by ORing 2 flag it into the flags vector. The flags field should be the minimum necessary length. 
Thus, a vector where flags 2 and 5 was set would be the bytes 01 24. The only flag available is 
fragment (0) indicating that the message has been fragmented using the procedure specified in 
Section 5.3.5.4. 

The application_data field contains the data for the application. This is not interpreted by the 
security protocol and is passed unchanged up to the application. 

The message_id is a two-byte string that is unique for the transmission_time value. 

The transmission_time field contains the time at which the message was generated in 
microseconds since the UNIX epoch (midnight, January 1, 1970). 

The transmission_location field contains the location to which the message applies. For an 
OBU, this should be the current location of the unit as indicated by the GPS. An RSU, however, 
may "speak for" a physical unit that is not exactly in the same location as the antenna. For 
instance, a single RSU might broadcast messages for stop signs on four corners of an intersection. 
Such usages are explicitly permitted. 

The signer value contains enough information to determine the keying material used to sign the 
message – though not necessarily the identity of the signer. 

The signature block contains the digital signature itself. 

Location Encoding 
VSP uses lat/long/altitude coordinates to represent position, encoded in the Location 
structure: 

 

     struct { 

             opaque        latitude[5]; 

             opaque        longitude[5]; 

             uint16        altitude; 
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     } 3DLocation 

 

     struct { 

             opaque        latitude[5]; 

             opaque        longitude[5]; 

     } 2DLocation 

 

Latitude and longitude are encoded as described in RFC 3825 [47], with a 6-bit 
resolution field and a 34-bit 2s complement fixed-point value. Implementations should 
use a resolution no less fine than 1 meter. 

Altitude contains the an altitude position indicator in meters. All positions must use the 
WGS 84 [48] Datum. 

Signer Info 
The SignerInfo structure allows the recipient of a message to determine which keying 
material to use to authenticate the message: 

 

     struct { 

             SignerIdentifierType     id_type; 

 

             select (id_type) { 

               case certificate: 

                 VSPCertificate certificate; 

               case certificate_digest: 

                 opaque         digest[20]; 

             } 

     } SignerInfo; 

 

     enum { certificate(0), certificate_digest(1), (255)} SignerIdentifierType. 

 

Currently, the SignerInfo may contain either a certificate or a message digest of a 
certificate. If the id_type field contains certificate (0) then the SignerInfo contains a 
certificate. If the id_type field contains certificate_digest (1) then the 
SignerInfo contains the SignerID corresponding to the relevant certificate. 
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Signature 
The signature field contains the actual signature. The signature algorithm is uniquely 
determined by the type of the key used to generate the signature. There are no in- 
message indicators for signature algorithm type. 

The signature is computed over the encoding of the entire ToBeSigned structure. Thus, 
for instance, if ECDSA is used as the signature algorithm the input message M to 
Hash(M) is the value of unsigned_message. 

The signature value is simply a byte-string encoded in a signature algorithm-specific 
manner. Currently, the only algorithm so defined is ECDSA. Section 5.3.4.3.1 provides 
details on the use of ECDSA in VSP. 
ECDSA Signatures 

ECDSA signatures are performed as described in [46]. The input message is the encoded 
unsigned_message value. An ECDSA signature consists of two values r and s. These 
integers shall be converted into byte strings of the same length as the curve order n using 
the procedure of Section 4.3.1 of ANSI X9.62 [46]. The strings are padded with leading 
zeros to obtain the appropriate length. The strings are then concatenated to form the 
appropriate signature value: 

 

     struct { 

            opaque[curve_order] r; 

            opaque[curve_order] s; 

     } ECDSASignature; 

 

Note that because the verifier knows the size of the curve, this structure can be 
unambiguously parsed despite the lack of length fields. 

Transmission Processing 
RSU and PSOBU transmission processing is straightforward: 

1. Generates a random message ID. 

2. Get the current position and time values. 

3. Encode the unsigned_message value. 

4. Digitally sign the unsigned_message value. 

5. Create and encode the SignedMessage value. 

OBU transmission processing is similar but with one important difference: the message 
signature must be performed in a tamper-resistant hardware security module (HSM). The 
message_id, transmission_time, and transmission_location values must be 
generated inside the HSM. Thus, the tamper-resistant module must contain a real- time 
clock, GPS processor, and the cryptographic keying material. This ensures that the unit 
cannot forge messages with arbitrary positions or timestamps.  
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Reception Processing 
When a unit receives a SignedMessage it must use the following process – or its 
equivalent – in processing it: 

1. Decode the message. 

2. Check that the transmission_time is within the acceptable time window. If 
not, discard the message. 

3. Check that the transmission_position is within the acceptable position 
window. If not, discard the message. 

4. Look up the message in the cache of recently received messages. If the message 
has already been received, discard it as a replay. 

5. If the sender's certificate contains a scope restriction, verify that the 
message_position is within the geographic scope of every certificate in the 
sender's certification path. If not, discard the message. 

6. Verify that the application field in the message is consistent with the scope 
restriction in the certificate. 

7. Verify that the sender's certificate has not been revoked. If the sender's certificate 
has been revoked, discard the message. 

8. Verify the sender's certificate. If the sender's certificate does not verify, discard 
the message. 

9. Verify the signature on the message. If the signature does not verify, discard the 
message. 

10. If all the previous tests verify, pass the message up to the application layer. 

Note that this process is carefully designed to minimize the number of public key 
operations. Thus, checks 1-7 all can be performed with minimal computational overhead. 
Check 8 can be cached if the same certificate is seen multiple times. Thus, the only per-
message computational overhead is seen in step 9. Implementations can use any 
equivalent process, however this algorithm is likely to be the most efficient. 
Anti-Replay 

Anti-replay in VSP takes advantage of the fact that each unit has an accurate clock. Thus, 
the clock in the sending unit (and, therefore, the timestamps in its messages) will be 
closely synchronized to that of the receiving unit. The receiving unit must use the 
following algorithm to prevent replays. 

Each receiving unit maintains an anti-replay window of size 2r; r should be at least 30 
seconds. The receiver's idea of the current time is set to T. When a packet is received 
with timestamp t, the following procedure is followed: 

1. If t<T-r discard the packet as out of window. 

2. If t>T+r discard the packet as out of window. 

3. If a copy of the packet is in the "already received" cache, discard the packet as a 
replay. 

4. If the packet is accepted, add it to the already received cache and deliver it. 
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Every time that T advances, the already received cache should be emptied of all packets 
older than T-r. A ring buffer is a convenient data structure for this purpose; however, the 
exact choice of implementation is left up to the implementer. 
Constructing the Certification Path 

Certification path construction in VSP is an all-or-nothing proposition. Because messages 
must be processed in real time, implementations must either have the certificates on hand 
to verify a message or reject that message. Implementations must follow a procedure 
equivalent to the following algorithm, which is a form of the usual bottom up 
construction approach: 

1. Set C equal to the current certificate and i=0 

2. Set path[i]=C. 

3. Set i=i+1. 

4. If C is a trust anchor, the path is complete. Output path and i. 

5. Parse C and extract the signer_id field 

6. If there is a certificate in the local certificate cache such that the high order bits of 
SHA1(S) match the signer_id, call that certificate S. Otherwise, exit and 
output failure. 

7. Set C=S. 

8. Go to step 2. 

The algorithm above delivers either an error or an unverified certification path of length i. 
Once the certificate is constructed, it must be verified, as described below. As noted 
before, we deliberately perform all the checks that can be performed with the unverified 
certification path before incurring the costs of signature verification. 
Location Checks 

Once the certification path is constructed, the recipient needs to verify that the location in 
the message is within the GeographicScope restrictions of the certification path. For 
each certificate in the path, the recipient must check that the location in the message is 
within that certificate's GeographicScope. Note that we do not require that the region 
permitted by each certificate be completely contained within the scope of the CA that 
signed that certificate. All that is necessary is that the location of the message be within 
the scopes of all the authorizing certificates in the certification path. 
Usage Checks 

The recipient must also check the usage restrictions on the certificates in the certification 
path. Each certificate except the end-entity certificate path[0] must be of type ca. 

If the end-entity certificate is of type rsu or psobu, then the application field in the 
UnsignedMessage must be present in the application list in the certificate. If the end- 
entity certificate is of type obu the application field in the UnsignedMessage must be 
one of the applications that are permissible for OBUs. All application descriptions must 
describe whether they are permissible for OBUs or not. In addition, the recipient must 
check that the scope restrictions of the CAs in the path permit them to issue the 
certificates that they have issued. Thus, the application must also be permitted for each 
certificate in the path. 

  
Appendix H  81 



 

 
Check Certificate Cache 

Recipients should maintain a cache of valid (both in terms of signature and CRL status). 
Implementations should check this cache prior to performing the remaining operations. A 
successful result allows bypassing of the remaining checks. 
Certificate Revocation List Checking 

Before a message is accepted, the recipient must check the appropriate Certificate 
Revocation List to determine whether the message was revoked at the time of message 
generation. 

The appropriate CRL is defined as the one with a ca_id field that matches the 
certificate's signer_id field and a crl_series value that matches that in the 
certificate.  

Once the correct CRL is identified, the recipient must then verify that the signing 
certificate does not appear on the CRL. For non-anonymous CRLs 

, the recipient checks that the certificate hash does not appear on the CRL. For 
anonymous certificates, the recipient must verify that none of the linkage values in the 
CRL maps to the signing certificate. 

As with any CRL-based system, the question arises of how to behave when the current 
CRL is not available. This is a particular problem in the VSP system because VSP CRLs 
are all push. Implementations have no ability to pull a CRL from the CA. Thus, an 
implementation that has been out of contact for a long period of time may get a message 
before getting the relevant CRL. 

In order to balance the concerns of rejecting valid messages because we do not have a 
current CRL and of accepting invalid messages because we do not know that the signer is 
revoked, we recommend that recipients accept certificates for which a current CRL is not 
available provided that the most recent CRL is not too old. "Too old" is necessarily 
fuzzy, but we suggest no more than a month and no less than 50% of the time to the next 
CRL. For example if CRLs are issued on a monthly basis and the most recent CRL was 
issued on January 1. A recipient might accept certificates that were not revoked as of 
January 1st in the period February 1-February 14th, and perhaps through February 28th. 
Checking Certificate Validity 

Once all other checks have been performed, the recipient must check the validity of the 
signatures of each certificate in the certification path. Each certificate must be signed 
with the public key of the next higher-level certificate in the path. 

5.3.5 System Updates 
In order to maintain the VSC system, some data needs to be spread to most or all units in the 
system. At minimum, all units must contain a recent copy of the OBU CRL list. In addition, all 
units in a given geographic region need an up- to-date copy of the CRLs that correspond to RSO 
and PSOBU certificates that are active in that area. 

VSP has two mechanisms for widespread (whether global or local) propagation of update 
information: 

1. Broadcast by RSUs 

2. Flooding by OBUs 
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Updates enter the system by being broadcast by an RSU. They are then picked up by OBUs, 
which propagate them to other OBUs as necessary. A key element of this scheme is that updates 
can be broken up over multiple messages in such a way that once a critical number of messages 
are received the entire update can be reconstructed. Section 5.3.5.3 describes this process in 
detail. 

Initial Update Injection 
System updates are generated centrally and then propagated to RSUs via mechanisms that 
are outside of the scope of this protocol. For example, a transportation agency might 
generate a CRL for its RSUs and then deliver it to the RSUs it operates via wired Internet 
connections. Once the transmitting RSUs obtain a new update, they transmit it to units in 
their local area. Section 5.3.5.3 describes the correct transmission strategy. 

Update Messages 
There are two currently defined types of update, CRLs (application type crl_transmit) 
and certificates (application type cert_transmit). In both cases, the 
application_data field of the signed_message is set directly to the value of the 
encoded CRL or certificate If the CRL or certificate is too large to fit in a single message, 
it must be fragmented, as described below. 

Reliable Broadcast of Updates 
In general, system updates will be far too large to fit in a single VSP Message structure. 
Thus, they must be split over multiple messages. In order to do this efficiently without 
requiring an acknowledgement channel, we use expandable forward error correction 
codes, as described in RFC 3450-3453 [49]. These codes allow split a message into 
pieces such that any subset of those pieces of combined size approximately that of the 
original message can be used to reconstruct the original message 

  A sender starts with a message M. It then generates and transmits a series of symbols 
using the following algorithm: 

1. Generate a random symbol_id. 

2. Compute the corresponding symbol using Ssymbol_id = 
FEC_encode(symbol_id,M). 

3. Transmit the pair (symbol_id,Ssymbol_id). 

Because the symbol_id is randomly generated, the sender can be stateless. As long as 
the symbol_id space is relatively large (e.g., 32 bits), the probability of symbol 
repetition is low. As many output symbols can be generated as the number of possible 
symbol_ids. In VSP, source symbols are transmitted using the following structure: 

 

     struct { 

             opaque                update_digest[20]; 

             uint32                required_symbols; 

             uint8                 fec_scheme; 

             uint32                source_block; 

             uint32                symbol_id; 
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             opaque                symbol<1 .. 2^16-1>; 

     } EncodedSymbol; 

 

EncodedSymbol structures are constructed using the procedure described in RFC 3450. 

update_digest is a SHA-1 hash of the original source message, which allows 
recipients to disambiguate different fragments for reassembly. 

required_symbols contains the expected number of symbols which will be required 
for reconstruction. This allows the recipient to know when to start reconstructing. 

Transmitting Update Fragments 
A transmitting unit transmits an update as a stream of EncodedSymbol structures. In 
order to prevent denial of service attacks on individual update messages, each symbol 
must be signed. The symbols are transmitted as SignedMessage objects with the 
appropriate application ID, either cert or crl. Before attempting to reconstruct a 
message, the recipient should verify the fragment certificates. This does not ensure 
validity of the reconstructed message but merely ensures that the fragments were not 
tampered with, thus avoiding reconstruction errors. The recipient must still verify the 
signature on the reconstructed object (e.g., certificate or CRL). 

5.4 Enrollment Procedures 
The first thing that a unit must do in order to transmit VSP messages is to enroll and get certified 
keying material. In the case of CAs, RSUs and PSOBUs, this is a fairly straightforward 
procedure, described in Section 5.4.1. Enrollment for OBUs is complicated by the requirement 
for privacy and is described in Section 5.4.2. 

5.4.1 CAs, RSUs, and PSOBUs 
Because CAs, RSUs and PSOBUs are authenticated via ordinary PKI-style mechanisms, 
enrollment of these units can be done in the conventional way. To a first order, this is a manual 
process: the enrolling party (the future certificate holder) presents the CA with: 

 Its public key 

1. Its desired authorization information (scope) 

2. Documentation indicating that it is entitled to the desired certificate. 

The CA then decides whether to issue a certificate or not based on its internal policies. If the 
policy checks succeed the CA returns a certificate to the unit. 

Although these processes are inherently somewhat manual, experience with PKI systems has 
shown that it is helpful to have standard formats for certificate signing requests (CSRs) and 
delivery of the return certificates. We describe those here. 

Certificate Signing Requests 
In order to get a certificate signed, the enrollee first generates an asymmetric key pair and 
uses it to construct a CertificateSigningRequest object. 

 

     struct { 

             uint8                csr_version; 
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             SubjectType        type; 

 

             CertSpecificData type_specific_data<1 .. 2^16-1>. 

             PublicKey        public_key; 

     } UnsignedCSR; 

 

     struct { 

             UnsignedCSR        unsigned_csr; 

             Signature        signature; 

     } CertificateSigningRequest; 

 

The csr_version field should be set to 1 for this specification. 

The subject_type should specify the desired type of certificate. Note that the value must 
not be obu. 

The type_specific_data field should specify the desired scope. Note that this is rendered 
as a variable length value. This enables the enrollee to specify no scope value (by using a 
zero length) and let the CA insert a correct scope. Only one CertSpecificData structure 
should appear in this field. 

The public_key field contains the public key of the enrollee. 

The signature field contains a signature over the encoded unsigned_csr value using the 
private component corresponding to the public_key value. 

Trust Anchor Certificates 
In VSC, trust anchors are represented as self-signed certificates. These certificates are 
precisely like ordinary CA certificates except that they have a signer_id that consists 
entirely of zeros. 

Certificate Issuance 
Once a CA receives a CSR, it must compare it with the associated documentation 
(delivered in an unspecified manner) and decide whether the certificate can be issued 
according to the CA policies (also a local decision). If the certificate can be issued, the 
CA then formats the appropriate UnsignedCertificate structure and signs it to 
generate a Certificate value. Note that the CA is not bound by the enrollee's suggestion of 
subject type or scope. It may issue a certificate of any type or scope of its choosing. 
However, a CA should not generate certificates which will not result in verifiable 
certificate chains, e.g. by listing geographic scopes which are not within the CA's own 
scope. 

Once the Certificate is created, the CA returns it in a CertificateResponse structure. 

 

     struct { 

             Certificate        certificate_path<1 .. 2^32-1>; 
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             OrdinaryCRL        crl_path<1 .. 2^32-1>; 

     } CertificateResponse; 

The certificate_path contains the certificate path of the new certificate. This path is 
in order, with the most local certificate (the newly issued one) being first and each 
successive certificate signing the one before it. The path should be complete with the 
final certificate being a trust anchor. However, some implementations may choose to 
deliver less complete paths for space reasons. 

The crl_path contains the CRLs necessary to validate the certificate. At minimum, it 
must contain the most recent version of the CRL series on which the issued certificate 
would appear if it were revoked. In addition, CAs should include CRLs corresponding to 
other CAs in the chain. These CRLs are not ordered. 

5.4.2 OBUs Certificate Initialization 
OBUs should be initialized by their manufacturers. This initialization must happen in such a way 
that no identifying information is stored linking any given OBU certificate to the identity (serial 
number, physical identity, etc. of the OBU). 

The VSC team anticipates that the OBU CA and the OBU to be initialized will be physically 
collocated. When the operator of the CA authorizes the initialization of the OBU, the OBU 
generates a series of CertificateSigningRequests and provides them to the CA. The OBU 
also provides the encrypted h[i],B[i] pairs to the CA. Note that the escrow authority may not (and 
probably should not) be the same as the CA. The CA then signs the certificates and returns the 
CertificateResponse values. At this point the OBU is initialized. 

5.5 Suggested Operating Procedures 
This section provides identification of some of the security architecture operating requirements 
that will arise, and suggests a solution.  

5.5.1 OBU Operating Requirements 
Because OBUs are allowed to send so many different kinds of messages from so many different 
locations, the OBU must be designed to restrict the class of messages that can be sent. 

The OBU signing keys must be embedded in a tamper- resistant Hardware Security Module 
(HSM). This HSM must be compliant with FIPS 140-2 level 3. The HSM must be designed not to 
release the OBU signing keys from the module. In addition, it must not be usable for signing 
arbitrary messages. 

All messages signed by the HSM must be wrapped in a SignedMessage structure. The HSM 
must populate the message_id, transmission_time, and transmission_location fields. 
The transmission_time and transmission_location fields must be populated with data 
received respectively from a clock and GPS unit, which are housed within a FIPS 140-2 level 3 
module. It is also recommended that the clock and GPS unit be housed within the same module as 
the signing module. However, if they are housed within a separate unit, then communications 
between the two modules must be authenticated with an algorithm that provides at least 100 bits 
of security and measures must be taken to ensure timing synchronization between the two 
modules. 

The clock must be periodically updated from the GPS unit in order to correct for clock slip. 
However, because the GPS unit gets its input from radio signals outside the tamper boundary, 
mechanisms must be used to isolate the system from GPS spoofing. The clock must be calibrated 
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for maximum slip values and must not allow for corrections beyond those values. In addition, 
"backward" corrections must be performed by slow-ticking rather than by rolling time backward. 
In addition, the system should enforce physical plausibility rules, such as rejecting speeds in 
excess of the maximum speed of the vehicle, impossible altitudes, etc. 

5.5.2 OBU CAs and Escrow Authorities 
In order to preserve privacy, it is critical that no records be kept of the connection between any 
individual OBU and the certificates that it was issued. This requires certain procedures from CAs 
and escrow authorities. 

5.5.3 CA’s Procedures 
For signature algorithms that are compatible with blind signatures, certificates should be signed 
using a blind signature protocol. However, not all algorithms are compatible with blind 
signatures. In particular, ECDSA-- which is the only currently defined algorithm--is not. An 
alternate mechanism is therefore described that should be used in such cases. 

The actual CA signing unit should be embedded in a FIPS 140-2 level 4 tamperproof module. 
The OBU should be physically connected to the CA signing unit (e.g. via FireWire or USB) and 
should establish a cryptographically secure connection using TLS [6] (the CA's TLS certificate 
should be wired into the OBU at manufacture). All communications should take place over this 
channel. Once the certificates have been issued the CA should output the encrypted h[i],B[i] 
pairs and then delete all records of the transaction. 

No OBU-specific identifying information should be passed over this channel. Instead, the 
authorization for this process should be performed by placing the CA in "active" mode. Once the 
CA is in active mode, it will sign certificates for some number of OBUs without knowing their 
identities. In order to protect the CA from theft and misuse, the ability to activate the CA should 
be controlled via conventional cryptographic token and secret sharing technology.  

Escrow Authorities 
As described in Section 5.3.1.5.1, the ability to link certificates from the same OBU is 
reserved to Escrow Authorities. In order to preserve privacy, Escrow Authorities should 
not be the same as the OBU CAs. 

Escrow Authorities must keep linkage information under strict physical security and 
make best commercial efforts to retain confidentiality of said records. Access to the 
escrowed h[i],B[i] pairs should controlled by a FIPS 140-2 level 4 device. This 
device should restrict the number of linkage events to a limited number per day. 

5.6 OBU Privacy Parameters 
This section of the document addresses OBU privacy parameters. 

5.6.1 Choice of Work Factor for OBU Blinding 
Section 5.3.1.5.1 describes a mechanism for increasing the cost of de-escrowing OBU 
certificates. The rationale here is that OBU revocation will happen relatively rarely and therefore 
need not be inexpensive. Making the cost of linking OBU certificates relatively high reduces the 
probability that VSC can be used as a generic tracking system for a large number of OBUs. Thus, 
w should be chosen so that it is possible to de-escrow OBU certificates when necessary for 
revocation but sufficiently expensive to make it impractical to do so on a mass basis. 

The correct metric for choosing w is cost. It should be sufficiently high that casual de-escrowing 
is expensive but sufficiently low that it is practical to de-escrow a key. In our constraints analysis, 
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we estimated that $5,000 would be the target investigative cost for incidents caused by a 
malicious OBU. Therefore, we recommend that w be chosen so that the cost of revoking an OBU 
once its certificate is identified be of the same order of magnitude, between $1,000 and $5,000. 
OBU manufacturers should periodically adjust the value of w upward to keep pace with the 
increasing speed and decreasing cost of hardware. 

5.6.2 OBU Certificates 
Giving each OBU a large number of certificates provides unlinkability against ordinary attackers. 
An attractive feature of the VSP protocol design is that the size of protocol messages is 
independent of the number of certificates per OBU. Thus, the only constraints on the number of 
certificates per OBU are the cost of initial OBU initialization and OBU memory. 

We recommend that at minimum each OBU be issued 5,000 certificates. In order to minimize 
information leakage, signing keys should be randomly selected and used for a short time period 
and then discarded. Implementations may use the following algorithm, which produces a key 
half-life of h seconds or m miles, for key selection, with a uniform probability that a key will be 
discarded in any time period. 

1. Select a random number r uniformly from the set [1,n] 

2. Set the current key to K[r]. Set t0 to the current time in seconds. 

3. As each second passes, with probability [log(2)]/h * elog(.5/h) discard the key and go to step 
1. 

4. As each mile passes, with probability [log(2)]/m *elog(.5/m) discard the key and go to step 1. 

Because the probability that a key will be discarded is uniform, this leaks the minimal amount of 
information. 

We recommend values of h=600, m=10. With these values, a vehicle moving at 60 mph will have 
a key half-life of 5 minutes. As a special case, we recommend not changing keys when the 
vehicle is not in motion. This prevents an attacker from observing large number of keys from 
parked running vehicles. 

5.7 Opportunities for Optimization 
Compactness of encoded protocol data units is an important consideration for VSC. VSP has, 
therefore, been designed to be fairly parsimonious with respect to PDU size. However, in the 
interest of maximizing protocol and design flexibility we have deliberately chosen not to make a 
number of small optimizations that would individually save a byte or two. It may be discovered 
that these optimizations pay off in the future as the protocol becomes more refined. Some such 
optimizations are listed here. 

5.7.1 Combined Algorithm Identifiers 
Currently VSP uses separate algorithms and parameters. Thus, ECDSA has a parameter 
specifying the group being used. This preserves the maximum amount of flexibility because it 
allows an arbitrary amount of information to be carried in algorithm parameters. However, it also 
consumes additional space and is unnecessary if there are only a small number of 
algorithm/parameter pairs. Identifying these pairs by a single integer would save a byte or two per 
certificate. 
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5.7.2 Length of Fields 
VSP makes use of variable-length fields in a number of locations. These fields are denoted by use 
of the notation <YYY - XXX> where XXX is the maximum length of the field. When such fields 
are encoded, they are encoded by first encoding the length and then the value. The length is 
encoded as a fixed-width value of 1-byte multiples. Thus, in order to encode a field that might be 
256 bytes long, we need a 2-byte length field – the same size length field as would be required for 
a value with a maximum length of 65535 bytes. Thus, whenever we wish to reserve a length 
larger than that which would fit in x bytes, we instead use the largest length that would fit in x+1 
bytes. It is not expected that fields of that size will ever appear. 

There are two potential optimizations here: 

1. Restrict maximum lengths more tightly in the protocol. E.g., use opaque field <1 
.. 500>. 

2. Use smaller maximum length values, thus saving length bytes. 

The first option only prevents programmers from using large data sizes, but doesn't provide an 
immediate savings. The second option provides a single byte saving for every field where the 
field is represented. 

 

5.8 Summary of Syntax 
This section provides a summary of the syntax discussed heretofore: 

 

     struct { 
             uint8              certificate_version; 
             SubjectType        subject_type; 
             CertSpecificData   type_specific_data; 
             Date               expiration; 
             CRLSeries          crl_series; 
             SignerID           signer_id; 
             PublicKey          public_key; 
     } UnsignedCertificate. 
 
     opaque[8]        SignerID; 
     uint16           CRLSeries; 
 
     struct { 
             select(subject_type){ 
               case ca: 
                 CAScope     scope; 
               case rsu: 
                 RSUScope    scope; 
               case psobu: 

  
Appendix H  89 



 

 

                 PSOBUScope  scope; 
               case obu: 
                 LinkageData linkage; 
               case crlsigner: 
                 CRLSeries   responsible_series<2^16-1>; 
             } 
     } CertSpecificData; 
 
     enum {ca(0), rsu(1), psobu(2), obu(3), crlsigner(4), (255)} SubjectType; 
 
     uint16 Date; 
 
     struct { 
              SignatureAlgorithm algorithm; 
 
              select(algorithm){ 
                case ecdsa: 
                  ECDSAKey key; 
              } 
     } PublicKey; 
 
     struct { 
             opaque point<1..2^8-1>; 
     } ECPoint; 
 
     enum { ecdsa(0), (255)} SignatureAlgorithm; 
 
     struct { 
             uint16               length; 
             UnsignedCertificate  unsigned_certificate; 
             Signature            signature; 
     } VSPCertificate 
 
     opaque    Signature<1 .. 2^16-1>; 
 
     struct { 
             NamedCurve        curve; 
             ECPoint           point; 
     } ECDSAKey; 
 
     enum { 
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          K-163(1), 
          B-163(2), 
          K-233(3), 
          B-233(4), 
          reserved (5..239), 
             private (240..255) 
     } NamedCurve; 
 
 
     struct { 
           opaque point <1..2^8-1>; 
     } ECPoint; 
 
 
     struct { 
             ApplicationID           applications<0 .. 2^16-1>; 
             SubjectType             unit_types<1 .. 2^8-1>; 
             GeographicRegion        region; 
     } CAscope. 
 
 
     struct { 
            ApplicationType     type; 
            ApplicationSubtype  subtype; 
     } ApplicationID; 
 
     enum  {cert_transmit(0), crl_transmit(1), (2^16-1)} ApplicationType; 
     opaque ApplicationSubtype<0 .. 255>; 
     enum  {fragment(0), (2048)} MessageFlags; 
 
 
     struct { 
             RegionType   region_type; 
 
             select(region_type){ 
               case polygon: 
               PolygonalRegion    polygonal_region; 
               case circle: 
               CircularRegion     circular_region; 
               case rectangle: 
                  RectangularRegion     rectangular_region<2^16-1>; 
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             } 
     } 
 
     enum {polygon(0), circle(1), rectangle(2), (255)} RegionType; 
 
 
     PolygonalRegion        2DLocation<2^16-1>; 
 
     struct { 
            2DLocation   center; 
            uint16       radius; 
     } CircularRegion; 
 
 
     struct { 
          2DLocation     upper_left; 
          2DLocation     lower_right; 
     } RectangularRegion; 
 
 
     struct { 
             GeographicRegion        region; 
             ApplicationID           applications<0 .. 2^16-1>; 
     } RSUScope; 
 
 
     struct { 
             GeographicRegion        region; 
             ApplicationID           applications<0 .. 2^16-1>; 
     } RSUScope; 
 
 
     struct { 
             GeographicRegion        region; 
             ApplicationID           applications<0 .. 2^16-1>; 
     } PSOBUScope; 
 
 
     struct { 
            opaque        enc_w<2^8-1>; 
            uint16       i_value; 
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     } LinkageData; 
 
 
     struct { 
             uint32           length; 
             UnsignedCRL      unsignedCRL; 
             Signature        signature; 
     } OrdinaryCRL; 
 
     struct { 
             CRLSeries        crl_series; 
             SignerID         certificate_type; 
             SubjectType  entry_type; 
             uint32           crl_serial; 
             Date             last_crl; 
             Date             this_crl; 
             Date             next_crl; 
             CRLEntry         entries<2^64-1>; 
 
             SignerInfo       signer; 
     } UnsignedCRL; 
 
     struct { 
             select(certificate_type){ 
                     case ca: 
                     case psobu: 
                     case rsu: 
                         CertificateHash  cert_hash; 
                     case obu: 
                         OBUCRLLinkage    obu_link; 
               } 
     } CRLEntry; 
 
 
     opaque CertificateHash[10]; 
 
 
     opaque                OBUCRLLinkage <1 .. 2^8-1>; 
 
 
     enum { signed(0), (255)} MessageType; 
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     struct { 
            uint8                   protocol_version;  /* 1 for this version */ 
            MessageType             type; 
            opaque                  message<2^16-1>; 
     } VSPMessage; 
 
 
     struct { 
            ApplicationID     application; 
            opaque            flags<0 .. 2^8-1>; 
            opaque            application_data<1 .. 2^16-1>; 
            opaque            message_id[2]; 
            Time              transmission_time; 
            3DLocation        transmission_location; 
            SignerInfo        signer; 
     } ToBeSigned; 
 
     struct { 
            ToBeSigned        unsigned_message; 
            Signature         signature; 
     } SignedMessage; 
 
     uint64               Time; 
 
 
     struct { 
             opaque        latitude[5]; 
             opaque        longitude[5]; 
             uint16        altitude; 
     } 3DLocation 
 
 
     struct { 
             opaque        latitude[5]; 
             opaque        longitude[5]; 
     } 2DLocation 
 
 
     struct { 
             SignerIdentifierType     id_type; 
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             select (id_type) { 
               case certificate: 
                 VSPCertificate certificate; 
               case certificate_digest: 
                 opaque         digest[20]; 
             } 
     } SignerInfo; 
 
     enum { certificate(0), certificate_digest(1), (255)} SignerIdentifierType. 
 
 
     struct { 
            opaque[curve_order] r; 
            opaque[curve_order] s; 
     } ECDSASignature; 
 
 
     struct { 
             opaque                update_digest[20]; 
             uint32                required_symbols; 
             uint8                 fec_scheme; 
             uint32                source_block; 
             uint32                symbol_id; 
             opaque                symbol<1 .. 2^16-1>; 
     } EncodedSymbol; 
 
 
     struct { 
             uint8                csr_version; 
             SubjectType        type; 
 
             CertSpecificData type_specific_data<1 .. 2^16-1>. 
             PublicKey        public_key; 
     } UnsignedCSR; 
 
     struct { 
             UnsignedCSR        unsigned_csr; 
             Signature        signature; 
     } CertificateSigningRequest; 
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     struct { 
             Certificate        certificate_path<1 .. 2^32-1>; 
             OrdinaryCRL        crl_path<1 .. 2^32-1>; 
     } CertificateResponse; 
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7 Exhibit A:  Analysis of ECDSA Performance 
Only "even" elliptic curves (EC) will be considered here (i.e., EC over GF(2m)). "Odd" EC in 
general would be fairly comparable – but probably somewhat worse – in speed and size. The 
silicon industry in general has not seen many chips containing EC, so our estimates are somewhat 
theoretical in nature, as opposed to the modular math units discussed above for RSA and DSA, 
where many vendors have produced chips in recent years. However, our estimates here are quite 
encouraging. 

The "straightforward" algorithms used to implement EC are explained in the book Elliptic Curve 
Public Key Cryptosystems by Alfred Menezes [39]. While it is generally believed possible to 
implement such EC functions without violating any patents, Certicom is almost guaranteed to 
disagree, and it may be prudent to obtain a license from Certicom, which fortunately is in the 
licensing business. 

The basic step in an ECDSA signature is a point multiply, while the verify uses two such 
multiplies. Thus, verification is basically half the speed of signatures. All other operations 
involved are quite short, from a time perspective. Using the Menezes straightforward approach  
(page 22), each point doubling requires 1 field inversion, 4 field additions, 2 squares, and 3 
multiplications. A point addition requires Over GF(2m), a field inversion can be performed in 
about 2m clocks using Euclid's algorithm, and a square and a multiplication each take about m/2 
clocks, assuming we process two multiplier bits per clock. We use no normal bases, which would 
speed up the squares, since it slows down and complicates all the other steps rather significantly. 
If we assume that each field operation has an overhead of H clocks (where H is small, say 4), then 
a point doubling takes about 

(2m + H) + 4H + 2(m/2 + H) + 3(m/2 + H) = 4.5m + 10H clocks 

and a point addition takes about 

(2m + H) + 8H + (m/2 + H) + 2(m/2 + H) = 3.5m + 12H clocks 

 

For a point multiplication, assuming a random multiplier (i.e., with Hamming weight m/2), there 
are m point doublings and about m/2 point additions, for a total of 

6.25m2 + 16Hm clocks 
 

Using m = 163, which is one of the NIST standard curves for ECDSA, and assuming a frequency 
of 200 MHz, we obtain a point multiplication time of about 0.8 msec, which easily achieves our 
signature and verification latency. By building two of these units, we can achieve a throughput of 
over 2000 ECDSA verifications/sec. The silicon area of each unit should be under 40 Kgates, so 
the whole core would occupy roughly 75 Kgates, with an incremental cost under $0.30 and a 
rough power consumption of under 0.2 Watts. 

Observe that, if these EC numbers do not quite achieve the speed required (e.g.,if these 
theoretical estimates are slightly off), then there are several avenues available for optimization. 
First, the frequency of operation can probably be higher than 200 MHz fairly easily, as GF(2m) 
field operations never involve carry propagation. Second, it is possible to use somewhat more 
gates to increase the speed of squares and multiplies, by processing more multiplier bits per cycle. 
Third, standard windowing techniques for exponentiation could be used to minimize the number 
of point additions required. Finally, Certicom has some nice pending patents on optimizations 
that could be licensed to minimize the number of field operations required, basically by removing 
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the field inversions, without adding significantly to the silicon area. In any case, it seems quite 
clear that the performance goals for ECDSA can be met at a very reasonable silicon cost. 
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8 Exhibit B:  Choice of Key Size 
Although the protocols should be designed to work with a variety of key sizes, in this section we 
provide guidance for appropriate key sizes. Cryptographic key size is generally a choice between 
performance (both computation time and message size) and security. The following table (from 
[32]) shows the approximate strengths and sizes for a variety of ECDSA key sizes (all values in 
bits). 

Key Size Strength Signature Size 

130 70 130 

148 75 148 

165 80 165 

185 85 185 

205 90 205 

222 95 222 

240 100 240 

 

Table 5: ECDSA Key Strengths and Sizes 

 

We recommend that RSU and OBU keys be chosen at the 80-bit security level. Breaking such 
keys is well outside current capabilities and is surely far more expensive than simply violating the 
tamper seal on an OBU or RSU. Compromise of such keys can be dealt with by ordinary 
revocation mechanisms. 

We recommend that OBU CA keys be chosen to be stronger, because failure of such a key is 
catastrophic. Such keys should be chosen at at least the 90-bit security level. The root RSU CA 
key should be chosen to be at an equivalent security level. Intermediate and local CA keys can be 
weaker, especially if they are of limited scope or the keys themselves are of limited lifetime. 
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9 Exhibit C:  The Subset Difference Algorithm 
 

Subset difference is an advanced broadcast encryption scheme with superior properties to the 
subset cover scheme. As with subset cover, we arrange the nodes in a binary tree. The notation 
we use is that for any node Nx, the left child is called Nx,l and the right child is called Nx,r. A typical 
tree is shown in the figure below. 

 

 
 

Figure 17: Subset Difference Broadcast Tree 

 

Key assignment in subset difference is different from that of subset cover. In subset cover, a node 
gets the keys on the path from it to the root. In subset difference it gets the keys that are off the 
path to the root as well as for the children of those nodes. For instance, Figure 18 shows the nodes 
corresponding to the keys which node Nl,l,r has as shaded. Thus, somewhat counter-intuitively, 
node Nl,l,r receives the keys corresponding to nodes Nl,l,l , Nl,r and Nr and their children, namely: Kl,l,l , 
Kl,r , Kl,r,l , Kl,r,r Kr , Kr,l , Kr,l,l , Kr,l,r , Kr,r,l, and Kr,r,r . 
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Figure 18: Keys Assigned to Node Nl,l,r 

 

Encryption in subset difference is more complicated than in subset cover. The idea is to encrypt 
to subtrees with cutouts.  So, for instance, we might encrypt to "every child of Nl except Nl,l,r". We 
call this subset S(Nl , Nl,l,r). Now, it should be clear that the only leaf node key that Nl,l,r doesn’t have 
is Kl,l,r. Moreover, it is the only node that doesn’t have that key! So, if we want to encrypt to S(Nl , 
Nl,l,r), we counter-intuitively encrypt under key Kl,l,r. The nice thing about this scheme is that the 
ciphertext is much smaller. In order to revoke Nl,l,r in the subset cover scheme we would have to 
encrypt under three keys (Kr , Kl,r, and Kl,l,r.). Here we need only encrypt under one key. 

The problem here is that each leaf node is issued a ridiculous number of keys, eleven in this very 
simple system of eight users. However, this can be fixed with a little clever design. Instead of 
making each key independent, we use hashes to derive the keys for each child node from those of 
the parent node. Thus, instead of having the key for every other leaf node, each unit just has the 
keys of all the "off-nodes" in the path to the root and can derive the remaining keys by successive 
hashing. Thus, the number of keys stored at the end-node is commensurate with that required for 
subset cover. 
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10 Exhibit D:  Table of Acronyms 
 

ACJT   Ateniese, Camenisch, Joye, Tsudik (group signature algorithm) 

BLS   Boneh Lynn Shacham (public key signature algorithm) 

CA   Certificate Authority 

CRL   Certificate Revocation List 

DOT   Department of Transportation 

DSRC   Dedicated Short Range Communications 

DSA   Digital Signature Algorithm (public key signature algorithm) 

ECDSA  Elliptic Curve Digital Signature Algorithm 

FIPS   Federal Information PRocessing Standard 

MAC   802.11 Media Access Control layer  

(also Message Authentication Code but not in this document--see MIC) 

MIC   Message Integrity Check 

OBU   On-Board Unit 

OEM   Original Equipment Manufacturer 

PHY   802.11 Physical layer 

PKI   Public Key Infrastructure 

PSOBU  Public Safety On-Board Unit 

RSA   Rivest Shamir Adelman (public key cryptosystem) 

RSU   Road-Side Unit 

VIN   Vehicle Identification Number 

VSC   Vehicle Safety Communications 

VSCC   Vehicle Safety Communications Consortium 
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